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ABSTRACT

The software development process heavily relies on building systems,
which are prone to frequent failures, particularly in continuous integration
(CI) environments. In this study, we investigated the impact of major
change types, both individually and collectively, on CI build failure rates.
Specifically, we compared the contribution of changes stemming from
different underlying reasons, such as functional requirement additions, bug
fixes, enhancements, and dependency removals. Preliminary results revealed
that adding new functionalities had a lower impact on CI failures compared
to maintenance changes. Furthermore, we analyzed the characteristics
of the ultimate changes to identify common features among the change
types that contributed to failures. Subsequently, utilizing these identified
features, we developed a mathematical model to predict failures based
on the characteristics of the triggering change type. The trained model
demonstrated a commendable performance, accurately identifying potential
failure-inducing changes in the dataset, with a recall of 78% and precision
of 53%. This research sheds light on the relationship between change
types and CI build failures, highlighting the significance of maintenance
changes in driving failures. The identification of common features among
failure- contributing change types aids in understanding failure patterns
and supports the development of preventive measures. The predictive model
offers a practical tool for early detection and mitigation of potential
failures, contributing to improved software development processes and the
adoption of effective CI practices.
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1. Introduction

Each type of software maintenance, including corrective,
preventive, perfective, and adaptive, is performed through-
out a software lifespan with a variety of motivations [1],
[2]. Corrective maintenance is often due to bug reports
submitted by the users of the product, while preventative
activities refer to the future so that the software continues
to work as desired for as long as possible. Examples include
making necessary changes, upgrades, adaptations, and
more. Preventive software maintenance addresses minor
issues, which at a given time may lack significance yet
may turn into a major problem in the near future. These
are known as the software’s latent faults, which require to
be detected and corrected to prevent their transformation
into effective faults. Perfective changes often occur due to
users’ need for new features or requirements, which are
requested to be incorporated into the software to enhance

the software into the potentially best tool available for
the user’s needs. Finally, Adaptive software maintenance
addresses changing technologies as well as policies and
rules regarding your software. For instance, changes in
the operating system, cloud storage, or adjacent hardware
components [2].

In an environment with continuous integration (CI)
practices, software is maintained by several developers,
who frequently commit their code changes into a shared
repository to be automatically integrated into a single
project, tested, and eventually built [3]. In a CI process,
a significant number of heterogeneous and potentially
inconsistent changes are continuously integrated and built,
leading to build break being the most common cause of
failures [4], [5]. Once a building procedure breaks, the
software development process comes to a halt, especially
in collaborative and agile environments, where fixing the
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build suddenly becomes a top priority [6]–[8]. Build failures
slow down the product’s release pipeline, decrease team
productivity, and increase software production costs [9],
[10]. A study reported a software project in which total
build failures aggregated to a cost of more than 2,000 man-
hours [11].

A commit build may break for several reasons, such
as compilation errors or test failures. While less frequent
changes to the repository reduce the process overhead
caused by the build failures, delayed integration of the
changes complicates troubleshooting and repair, yielding
several conflicts in the system. Resolving complex conflicts
eventually adds a larger overhead to the process than
repairing the build failures of smaller changes. Hence,
taking preemptive action seems necessary to minimize the
frequency of build failures. The prediction of the issue
types, which are more prone to generate build failures,
helps to take preventive actions in regard to the build
failures.

To address the problem of build failure, several research
groups aimed to identify the most influential underlying
roots of build breaks [4], [6], [9], [10], [12], [13]. Some
studies developed tools and plugins to support fixing build
failures and make the recovery process faster and more
efficient [14]–[16]. For instance, among them, Beller et al.
[16] proposed TravisTorrent to process and analyze build
reports specific to Travis CI, from GitHub commits and
extract more information about the failures that occurred.

While our ultimate objective aligns with minimizing
CI failures, our approach revolves around predicting the
likelihood of build failures. In contrast to the previously
mentioned work, this research brings attention to the
contributions of underlying change factors to these fail-
ures. Therefore, our work has a dual purpose. Firstly, we
aim to investigate the specific issue types requested by
end users (or developers) that primarily trigger CI build
failures. Additionally, as each issue type necessitates dis-
tinct changes in the codebase, the second aspect of our
research focuses on analyzing the characteristics of the
resultant code changes, irrespective of their specific trig-
gers. The goal is to identify common features among the
failure-inducing code changes that lead to failures across all
user-requested issue types.

The reason is to further exploit the features of the
user-reported issues, as well as their potential subsequent
change impacts in the code to flag the potential failure-
inducing user requests as they are posted and before their
occurrence. For this, we trained multiple binary classifiers,
which assess the possibility of training a model for CI
failure predictions according to the issue’s characteristics.

The prediction of CI build failure reveals, in advance,
the critical issues that yield changes that are more prone
to failure once they are built in CI. Such warnings alert
developers to prepare before the product is built and
to take preventive measures. Therefore, the focus of this
research will be on the issue types and issue-related met-
rics that contribute and, therefore, allow the detection
of failure-inducing builds. For instance, are the perfective
maintenance activities more prone to CI build failures than
the corrective changes? In particular, this work answers the
research questions below:

• RQ1: What are the specific issue types requested
by users (or developers) that more significantly
contribute to CI build failures?

• RQ2: What are the shared characteristics and fea-
tures of code changes that lead to build failures
across different user-requested issue types?

• RQ3: How can a predictive model be developed to
estimate the likelihood of CI build failures based
on the identified issue types and their common
features?

The first question, therefore, seeks to identify whether
or not a change type is more likely to result in CI build
failure. For instance, are fixing bugs in the code or fixing
code dependencies more likely to trigger the CI build
failures? How about code changes related to incorporating
a new requirement or code improvement changes (e.g.,
refactoring)? Within each change type, once individually
and once again jointly, the second question studies the
(common) features of those changes which led to the fail-
ure. For instance, do changes whose related issue was of
critical priority more often lead to the CI build failure, in
comparison to the issues with minor priority? What about
the issues which were re-opened or those which already had
a patch available? The third research question explores the
possibility of building predictive models to predict build
failures according to the identified features in the previous
research question.

The significant contributions of this paper are of
great importance for the field, as they provide valuable
insights and practical solutions for addressing CI build
failures. Specifically, the paper focuses on three primary
contributions:

• Identification of issue types and their common fea-
tures: One of the main challenges in studying CI
build failures is the vast amount of data generated
from different types of issues. This paper success-
fully identifies the types of issues that contribute the
most to CI build failures and extracts their common
features. By doing so, researchers and practitioners
can select a more efficient set of attributes for
classification algorithms in CI failure studies. This
not only improves the accuracy of classification
models but also reduces the computational burden
associated with analyzing large datasets, leading to
more effective and targeted investigations.

• Analysis of code changes and failure-inducing
characteristics: The study investigates the char-
acteristics of code changes that result in build
failures across different user-requested issue types.
By examining the common features among these
failure-inducing code changes, independent of their
underlying reasons, the research provides insights
into the shared characteristics that contribute
to build failures. This analysis enhances the
understanding of failure patterns and assists in
developing more effective strategies for preventing
similar failures in the future.

• Prediction of CI build failures: The ability to predict
CI build failures is crucial for proactive problem-
solving and minimizing the impact of failures.
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By leveraging the identified issue types and their
common features, this paper develops a predictive
model that can anticipate potential build failures.
This proactive approach enables teams to address
the underlying issues before they manifest as actual
build failures. For example, the model can assign
problematic issues to more experienced developers
or trigger a review process for critical components.
By taking early action, developers can mitigate the
risks associated with build failures, streamline the
development process, and ultimately deliver higher-
quality software.

The findings of this paper not only contribute to the
advancement of research in CI failure analysis but also
provide practical implications for industry practitioners.
The identification of issue types and their common features
helps optimize the selection of attributes in classification
algorithms, leading to more accurate and efficient analyses.
Furthermore, the prediction of CI build failures empowers
teams to take proactive measures and prevent potential
failures, thereby improving the overall software develop-
ment process. The insights presented in this paper have
the potential to enhance the reliability, efficiency, and
effectiveness of CI systems, benefiting both researchers and
practitioners in the field.

The rest of this paper is structured as follows. Section 2
contains the background required for the work, including
information about our dataset. Section 3 provides a partial
answer to RQ1, while Section 4 tends to mathematically
measure the significance of the observed patterns. Further,
Sections 5 and 6 respond to RQ2 and RQ3, respectively.
Sections 7 and 8 discuss the threats to the validity of
our studies and the major related work to the research
topic. Finally, the observations are concluded, and future
directions are shared in Section 9.

2. Background

This section provides the background knowledge
required to better read the rest of the paper.

2.1. Travis CI

Continuous integration is a software development prac-
tice where developers regularly merge their code changes
into a central repository, after which automated builds and
tests are run. A build pipeline can consist of several tasks,
but at a minimum, three phases should be included:

1. Compiling code;
2. Executing tests, such as unit and integration tests;
3. Deployment, which contains packaging the com-

plied code into artifacts (e.g., jar files) and
deploying them.

Similarly, Travis CI provides a build environment for a
repository, cloned into it, and then executes a set of build
phases specified in a configuration file in .yml format. For
instance, once linked to GitHub, Travis monitors the repos-
itory. Once a new pull request is opened, Travis receives a
notification and executes the steps of the build pipeline as
defined in its configuration file. If any of the build steps

fails, the pipeline terminates and notifies users that the
build is broken.

Travis includes multiple features that made the envi-
ronment the developers’ preferred option to start with
build pipelines. For instance, Travis integrates with GitHub
repositories, deploys to multiple cloud platforms, and sup-
ports different programming languages.

An overview of Travis build states is demonstrated in
Fig. 1. As shown in Travis a build process may have one of
the three final states:

• Build Errored: Once a build process breaks before
the execution of build commands in script (e.g., due
to dependency or dependency installation failures),
the build is errored.

• Build Failed: Once build commands in Travis script
fail or time out, the process still continues before
the build is marked as failed.

• Build Passed: Once the execution of the entire build
job is completed the status of the build is marked as
successful.

In addition to the three statuses discussed above, can-
celed build status can occur in any phase and is triggered
with an outside command.

2.2. SmartSHARK Dataset

For our analysis, we used a publicly available dataset,
namely SmartSHARK, release 2.2 [17], integrating a col-
lection of various software projects and their evolving
artifacts from publicly available sources like GitHub,
Travis CI, JIRA issue tracker [18] along with a num-
ber of analysis on the data. The dataset consists of 98
Apache project data, stored in MongoDb database, includ-
ing 452,286 commits, 207,400 issues, 52,478 pull requests,
and 89,160 Travis build records.

There are two versions of the dataset available, one being
larger than the other version including code clone and
multiple software metrics as well. We used the smaller
dataset containing 36.3 GB of data, including the same

Fig. 1. Travis CI build process with final states of errored,
passed, and failed.
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Fig. 2. Partial ER diagram of SmartSHARK database relevant to this work.

information of the entire projects in the larger dataset
except for the code and metrics, not being required in
this work.

The portion of the database schema, that we used here,
is shown in Fig. 2 in the form of an E-R diagram. Each
collection in the Figure contains several additional fields
in the database, but due to space limitations, only a few
of the fields and the relationship between the collections
are demonstrated. The complete SmartSHARK schema
definition, along with their documentation, is available
in [19].

3. Whom to Blame in CI Build Failures?

This section provides a partial answer to RQ1, while the
following section provides statistical proof for this research
question.

We initially analyzed the available issue types in the
collection, identifying 31 unique types of issues among
the 98 projects. Among the issue types, new functionality-,
bugs-, and improvement-related issues contained the largest
number of records, including 13,216, 108,137, and 49,512
issues, respectively. We additionally looked into three addi-
tional issue types to be included in the study, including
task, sub-task, and issues related to dependencies consist-
ing of 11,367, 11,755, and 2,178 records in the database,
respectively. However, in our further manual analysis of
several records for each issue type, we found significant
inconsistencies among the types of issues labeled as “task”
and “sub-task,” leading us to exclude both these types from
the study while including the dependency-related issues.

As such, the final types were selected from four major
issue types, whose triggering reason is rooted in explicitly
different classes of change. The first type includes the
addition of new features to the software product (perfec-
tive maintenance), integrating new source code into the
framework (requirements). The second is related to fix-
ing product bugs (corrective maintenance) and integrating
corrected source code (bug). The purpose of the third
type is to improve the product (preventive maintenance),
integrating both new and corrected source code (improve-
ment). Finally, the last group is related to maintaining the
present dependencies (dependency), such as upgrading the
libraries that are in use by the software and addressing
the issues that happened due to a change in frameworks
(adaptive maintenance).

For the selected issues, the ‘commit’ collection, where
all commit-related information is stored, was searched to
identify the commits traced to each issue. As such, only
a total of 5,286 issues were found to be traced to the
commits, while the rest of the issue ids were not present

in the collection. This could be due to the missing issue-
commit trace links or due to not yet implemented new
features. In either case, this study did not include the issues
that were not linked to any commit in the database.

A total of 14,466 commits were retrieved through devel-
oping a query, searching the ‘linked issue ids’ field of the
commit collection for the ‘id’ value of the ‘issue’ collection.
Later, for the selected commits, the ‘Travis build’ collection
of the schema was searched, resulting in the return of 901
builds linked to the commits, as shown in Fig. 2. The pro-
cess of extracting the three artifact types, issues, commits,
and Travis build, took about 3 hours on a machine with
Intel core i7 1.80 GHz CPU with 16 GB RAM.

The entire process was then automatically repeated, tak-
ing 24 hours for issues with the type ‘bug fix,’ 12 hours
for type ‘improvement,’ and 1 hour for type ‘dependency’
tags. Table I shows the counts of the artifacts issues, traced
issues, commits, and builds for each issue class. In case of
dependency-related issues, we merged the two issue types
of ‘Dependency’ and ‘Dependency upgrade’ as both refer
to the same type of issue.

As shown in Table I, the number of identified issues
related to bug fixes was significantly higher than those rel-
evant to the new features, with a total number of 108,137,
among which 49,583 were traceable in the commit collec-
tion. Since several issues were linked to more than one
commit, there were 94,324 commits in total related to the
bug fix issues. Among them, only 7,553 commits relating
to 4,693 issues were traced in the Travis build records. This
happens since the relevant commits, addressing the same
concern, are often merged into a larger group of changes
to be built at once instead of re-building the entire system
for each individual commit. The last three rows of the
table show the number of failed, passed, and errored builds
for each issue type. The total build number is larger than
the value in the build counts related to issues in the sixth
row since sometimes the unsuccessful builds were repeated
multiple times before they succeeded. Fig. 3 represents a

TABLE I: The Counts of Commit and Build Artifacts for Each
Issue Type

Statistics Reqrm. Bug Imp. Dpn.

Total issues 13,216 108,137 49,512 1,798
Distinct issues in commits 5,286 49,583 23,758 318
Commits related to issues 14,466 94,324 52,646 584

Build count related to commits 901 7,553 4,731 37
Build count related to issues 471 4,693 2,793 25
Failed issue-related builds 459 3,661 2,437 16
Passed issue-related builds 196 1,895 1,251 6
Errored issue-related builds 223 1,785 948 0
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Fig. 3. Histogram showing % of failed, passed and errored verdicts for each issue type.

histogram of the failed, passed, and errored build rates
per issue for each change type. Builds with other verdicts,
such as canceled, are not shown here. As shown, a trivial
observation represents that the bug-fixing changes lead
to the majority of the CI Failures, yet further analysis is
required to draw any conclusion.

4. RQ1 Statistical Analysis: Primary Change Type in
CI Build Failures

To study the significance of our observations in the
previous section, and to answer our first research question,
we conducted a statistical analysis. As discussed earlier,
RQ1 attempts to study the significance and strength of the
relation between the issue types and CI build final verdict.

4.1. Chi-Square Test

Since the dataset majorly contains nominal data, in
order to use the same statistical equation for all the vari-
ables, we converted the commits and builds counts from
the count scale to the four nominal scales. This type of
conversion results in type consistency within the analysis
and therefore allows us to measure and interpret the same
metric for the entire variables in order to conduct a more
fair comparison.

To assess the contingency between the nominal values,
one commonly used test is Pearson Chi-square statistical
test, intended to test how likely it is that an observed
distribution is due to chance [20]. In this study, we adopted
Chi-square test to assess the significance of relation, as
well as Cramer’s V metric to measure the strength of the
significant relations [21]. We applied Pearson Chi-square
test to assess the independence of each variable pair with
each other. The V value is one measure to interpret the
relation between nominal values for the Chi-squared test.
To measure the correlation, the V coefficient divides the
square root of the Chi-squared statistic by the sample and
the feature size.

In addition, Chi-square distribution is accompanied by
a parameter called degree of freedom (df), representing
the number of independent variables within which the Chi
distribution is calculated. df estimates the number of the
variables in the calculation that are free to vary, while the
rest of the vectors are constrained to lie in the samples Chi
subspace [22]. The df can be considered as the minimum

number of the vectors which is required to define the
sample data in Chi subspace and can be calculated by sub-
tracting the number of Chi-estimated parameters from the
total number of values in the sample. A small df between
an issue feature and the dependent variable (build verdict)
determines that a smaller dimension is required to define
the samples with respect to this feature. Furthermore,
Pearson Chi-squared test requires a minimum expected
count of observations to be satisfied in all cross values of
the two variables in the test. This means once a certain
percentage of cross-value counts does not contain the Chi-
expected number, then the result is not valid for the pair.
This does not necessarily reject the correlation between
the two variables, but rather states that more samples of
a specific cross-value are required for the test to draw a
conclusion. In the literature, once 50% or more of the cross-
values counts are less than the Chi expected value, then the
test is considered invalid [23], [24].

4.2. Results and Discussion
To assess the significance of the observations in Fig. 3,

we need to show that the differences in the verdicts, which
we observed between the issue types and their build final
states (i.e., verdict), are statistically sufficient.

To indicate that the findings in Fig. 3 are not due to
chance and are, therefore, statistically significant, we con-
ducted a Chi-square test. The final verdict of the issues’
build is considered as the dependent variable, which takes
the values of failed and passed, and the nominal type
categories as the independent variable. The results of the
test will determine whether or not a statistically significant
relationship is present between the failures and change
types. As the results in Table II demonstrate, the signifi-
cance value of 0.001, which is smaller than our commonly
selected value of 0.05, verifies that an association between
the issue types and CI build verdicts exists, which is math-
ematically significant.

RQ1: Based on the empirical data analysis, changing the
existing source code for the purpose of resolving issues
relevant to bugs leads to the largest percentage of the
CI builds being unsuccessful. The Chi-square statistically
verified the significance of the association between the
issue types and CI build verdicts with p−value < 0.05.

The findings from RQ1, which indicate that changing
the existing source code to resolve bug-related issues con-
tributes the most to unsuccessful CI builds, have several
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TABLE II: RQ1: Count and Chi-Square Test Results for Change
Types

Statistics Reqrm. Bug Imp. Dpn. Total

Verdict failed 228 2,216 1,453 15 3,912
Verdict pass 243 2,477 1,340 10 4,070

Total 471 4,693 2,793 25 7,982
Value df Asymptotic significance

Pearson chi-square 17.444 3 <0.001
N of valid cases 7,982 – –

takeaways and implications for the software engineering or
CI community, developers, and researchers. These include:

• Prioritizing bug resolution: The findings underscore
the critical importance of effectively addressing
bugs in the source code. Developers and soft-
ware engineering teams should prioritize bug-fixing
activities and allocate sufficient resources to ensure
timely and accurate resolution. Emphasizing the
importance of bug detection, prevention, and res-
olution can lead to a more stable and reliable CI
process.

• Quality assurance and testing: The high percent-
age of unsuccessful CI builds associated with
bug-related code changes highlights the need
for rigorous quality assurance and comprehen-
sive testing practices. Developers should focus on
implementing robust testing strategies, including
unit testing, integration testing, and regression test-
ing, to identify and rectify bugs before they impact
the CI builds. This emphasizes the significance of
automated testing frameworks and continuous test-
ing processes.

• Code review and collaboration: The findings
emphasize the importance of code reviews and
collaboration among developers. Thorough code
reviews can help identify and address potential bugs
and issues before the code changes are integrated
into the CI pipeline. Collaboration and knowledge
sharing among team members, particularly in bug
resolution efforts, can enhance the overall quality
of code changes and reduce the likelihood of build
failures.

• Continuous improvement: The empirical evidence
highlights the need for continuous improvement
in software engineering practices. It is essential
for developers and software engineering teams to
continuously analyze and monitor the impact of
code changes on CI builds. This enables them to
identify patterns and trends related to specific issue
types and take proactive measures to optimize the
development process and minimize build failures.

• Research implications: The statistically signifi-
cant association between issue types and CI
build verdicts, as verified by the chi-square test,
provides valuable insights for researchers. This
finding encourages further investigation into the
underlying factors that contribute to unsuccess-
ful builds, exploring additional dimensions beyond
code changes, such as build configurations, testing
environments, and team dynamics. Researchers can

develop more sophisticated models and approaches
to predict and prevent build failures based on these
insights.

In summary, the findings from RQ1 highlight the impact
of bug-related code changes on CI build failures. These
findings emphasize the importance of bug resolution, qual-
ity assurance practices, code reviews, collaboration, and
continuous improvement in the software engineering and
CI community. They also provide valuable implications for
researchers to delve deeper into the causes and prevention
of build failures in the context of issue types and other
relevant factors.

5. RQ2 Statistical Analysis: Primary Features of
Change in CI Build Failures

This research question attempts to study whether a
common feature potentially exists between the features of
changes that lead to the CI Failures.

5.1. Issues’ Profiles

To conduct an analysis on the issues, we initially built a
dataset by creating a profile for each issue. We investigated
the relations among a larger number of issues’ character-
istics than only the issue types, such as their priority and
final status.

Thus, we identified a set of issue-related features that
we hypothesized primarily contribute to the final state of
the build process. For this, we first searched through issue
collection in the database to scan and select the potentially
correlated variables among the recorded features for issues
present in the database. Among the 25 present features in
the dataset, we selected issue type, priority, status, resolu-
tion, and counts of commits and builds, associated with
each feature. These features and their existing values in
the dataset are demonstrated in Table III, Accordingly, we
then built a profile for each 7,982 issues in the four selected
types.

Table III lists the selected independent variables and
the dependent variable (i.e., CI final state) in the study.
The possible values of each feature are presented in the
row below. The first column contains a unique ID for
the issue. The second column shows the initially selected
feature and issue types, with the values of requirements,
bugs, improvements, and dependency issues. The next three
columns contain the possible values for the issues’ features
of priority, status, and resolution. The status of an issue
is limited to the five categories of blocker, critical, major,
minor, and trivial, while the resolution feature provides a
more detailed description of the problem’s nature and takes
13 values, including cannot reproduce, done, duplicate,
fixed, implemented, information provided, invalid, none,
not a bug, not a problem, resolved, won’t fix, and works
for me. Columns six and seven demonstrate the number
of commits and builds associated with each issue. Finally,
for the dependent variable, the build verdict, we initially
searched the database for the values of failed, passed,
errored, canceled, created and started. However, the builds
associated with the selected issue types did not have a final
state of created or started.
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TABLE III: The Profile (ID, Independent, and Dependent Variables) Constructed for Each Issue. The Assigned Values are Listed
Underneath Each Variable

Independent variables

ID Type Priority Status Resolution

Requirement, bug,
im-provement, dependency

Blocker, critical, major,
mi-nor, trivial

Closed, in-progress, open, patch
available, reopened, resolved

Cannot-reproduce, done, duplicate, fixed,
implemented, information provided,

invalid, none, not-a-bug, not-a-problem,
won’t-fix, workaround, works-for-me

Commits Builds Verdict
n = 1, 2 ≤ n ≤ 3, 3 < n ≤ 10,

n > 10
n = 1, 2 ≤ n ≤ 3, 3 < n ≤ 10,

n > 10
Passed, failed

Fig. 4. Histogram showing the percentage of failed and passed
verdicts for each issue type.

As discussed earlier, several issues in the database were
associated with more than one build entity and, there-
fore, contained more than one build verdict. For obvious
reasons, in multiple cases, the verdicts were not necessar-
ily consistent. For instance, the issues with passed and
errored builds, in the majority of the cases, were even-
tually followed by a successful build after the problem
was resolved. Since the objective of the study is to study
difficulties that occur during the software building, we
only considered the two verdict values of non-problematic
or problematic issues as failed and passed values, respec-
tively. As such, the issues with only failed builds were
considered problematic (failed), while all other issues asso-
ciated with any passed, errored, or canceled builds were
considered as non-problematic (passed). As such, each
category of change consisted of relatively balanced data to
train a binary classifier accordingly. As illustrated in Fig. 4,
the requirements contained 48% of data from class failed
and 52% from class passed. Similarly, bug, improvement,
and dependency types, respectively contained 47% failed
and 53% passed records, 52% and 48%, and finally, 60%
and 40%.

5.2. Cramer’s Value

To identify the significant correlations between the
issues and their build verdict, we measured a correlation
metric for each feature, showing the amount of their
interference in the build’s success or Failure. For this, we
conducted a Chi-square test for the most contributing
features of the change in the failure of the CI builds. In
addition, in order to measure the extent to which the fea-
tures contributed, we conducted a Chi test with Cramer’s V.

Cramer’s V value measures the strength of a significant
association between the two categories. The higher the

value, the stronger the correlation between the pairs. For
instance, within the new requirements, commits counts
have the highest contingency with the build verdict.

Moreover, Cramer’s V value measures the strength of a
significant association between the two categorical vari-
ables. It ranges between 0 and 1. Whenever the value is
closer to 0, no association exists, and whenever it is larger
than 0.25, a strong relationship exists [25]. For instance,
within the new requirements, commit counts have the high-
est contingency with the build verdict. Cramer’s V can be
defined using the following formula [26], where φc denotes
Cramer’s V , χ2 denotes the Pearson chi-square statistic, N
denotes the sample size, κ is the lesser number of categories
of either variable.

φc =
√

χ2

N (κ − 1)

5.3. Results and Discussion

The study results identify which feature of the posted
issues, regardless of the following change type in the source
code, commonly contributed to the final verdict of the
CI build. As shown in Table IV, the significance value of
0.001, which is a p−value smaller than our chosen signifi-
cance level (α = 0.005) represents a significant correlation
among the number of commits, number of builds, priority,
and status type of the posted issues, with the CI build
failure. However, the Cramer’s Value of 0.06 prevents us
to scientifically draw a conclusion for the extent to which
the issues’ priority type contributed to the CI failures, since
this value demonstrates a specially small and negligible
association regardless of a significantly high confidence
(significance value < 0.001). This association is stronger
between build counts and the CI failure rate with the
Cramer’s V values of 0.29 and 0.27, respectively, showing
a large contribution, and the value of 0.12 is considered to
be representative of a medium contribution between status
type and failure.

The first column of Table IV represents the minimum
count percentage of each test. The statistics that passed
to pertain to this assumption, and therefore were ignored
in the study, are denoted with a ∗ sign in the Table. This
conveys that there are not enough samples of relation to
draw statistically significant relation among the variables.
However, the rest of the cells, with minimum count values
of below and equal to 50%, are the features for which the
Chi value is valid because the minimum count assumption
was met.
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TABLE IV: RQ2: The Profile (ID, Independent, and Dependent Variables) Constructed for Each Issue Where Cells Denoted with ∗ are
Pairs with Significant-Enough Results

Feature pairs Assumption Pearson chi-square tests Cramer’s V

min# Value df Sig. Critical Value Sig.

All Commits-verdict 0.0% 597.46 3 <0.001 12.838 0.27 <0.001
Builds-verdict 0.0% 688.81 3 <0.001 12.838 0.29 <0.001

Priority-verdict 0.0% 28.86 4 <0.001 14.860 0.06 <0.001
Status-verdict 16.7% 125.51 5 <0.001 16.750 0.12 <0.001

Resolution-verdict∗ 41.7% 16.05 11 0.139 5.578 0.04 0.139

For the valid statistics then, the Chi value, (in column
three Table V) is compared to a calculated value from
the Chi distribution table with the corresponding df and
p−value. This value is called the critical value and is
recorded in the sixth column. Once the Chi value is greater
than the critical value, then the null hypothesis is rejected,
and an association can be inferred. For the values denoted
with ∗, the number of visited samples was not enough to
draw a conclusion. The cells denoted with ∧ are pairs with
significant enough results.

The test significance value finally determines whether
the test was able to determine a statistically significant
correlation between the two features or not.

To further investigate the occurrence of the same pattern
individually in each category of change, we extended the
study to each class of issue related changes. The results are
shown in Table V, representing the same pattern in changes
relevant to the addition of new functionalities, as well as
changes due to the improvement of the product’s quality. In
the change class relevant to removing dependencies, such a
pattern is not statistically shown due to the large p-values.
Yet, the alternative hypothesis is not rejected, and instead,
it is solely concluded that there is not sufficient evidence
to suggest an association between the variable and verdict

in this category. The addition of samples in this category
of change may improve the p-values so that a statistical
conclusion can be drawn. For obvious reasons, the study
shows that the number of commits and builds of an issue
has a large and positive association with the final build
status.

Note that it is not necessarily obvious that more builds
will lead to more failures. The relationship between the
number of builds and the occurrence of failures can vary
depending on various factors. Here are a few scenarios that
illustrate different possibilities:

• Improved stability with more builds: In some cases,
increasing the number of builds can actually
improve stability. By running builds more fre-
quently, developers can catch and address issues
earlier in the development cycle. This proactive
approach helps identify and resolve problems
before they accumulate and cause failures. Conse-
quently, a higher number of builds may result in
fewer failures overall.

• Diminishing returns: In certain situations, there may
be diminishing returns associated with increasing
the number of builds. Initially, as more builds are
executed, the chances of detecting and fixing issues

TABLE V: RQ2: Chi-Square Test Results for the Contribution of Change Attributes to CI Build Failure

Issue types Feature pairs Assumption Pearson chi-square tests Cramer’s V

min# Value df Sig. Critical Value Sig.

Requirements Commits-verdict 0.0% 25.27 3 <0.001 12.838 0.23 <0.001
Builds-verdict 12.5% 20.40 3 <0.001 12.838 0.20 <0.001

Priority-verdict∧ 40.0% 2.02 4 <0.001 14.860 0.06 <0.001
Status-verdict∧ 40.0% 17.39 4 <0.002 14.860 0.19 0.002

Resolution-verdict∗ 71.4% 10.59 6 0.102 18.548 0.15 0.10
Bugs Commits-verdict 0.0% 387.28 3 <0.001 12.838 0.28 <0.001

Builds-verdict 0.0% 464.91 3 <0.001 12.838 0.31 <0.001
Priority-verdict∧ 0.0% 22.60 4 <0.001 14.860 0.06 <0.001
Status-verdict∧ 50.0% 56.06 5 <0.001 16.750 0.10 <0.001

Resolution-verdict∗ 65% 8.10 9 0.523 14.684 0.042 0.523
Improvement Commits-verdict 0.0% 204.74 3 <0.001 12.838 0.27 <0.001

Builds-verdict 0.0% 201.109 3 <0.001 12.838 0.26 <0.001
Priority-verdict∧ 0.0% 7.153 4 0.128 1.064 0.051 0.12
Status-verdict∧ 33.3% 66.071 4 <0.001 14.860 0.15 <.001

Resolution-verdict∗ 60% 5.614 9 0.778 4.168 0.04 0.778
Dependency Commits-verdict∗ 66.7% 1.681 2 0.432 0.211 0.25 0.432

Builds-verdict∗ 66.7% 2.680 2 0.262 0.211 0.32 0.261
Priority-verdict∗ 66.7% 0.104 2 0.949 0.211 0.06 0.949
Status-verdict∧ 50% 3.175 1 0.075 2.706 0.35 0.075

Resolution-verdict∗ 66.7% 0.446 1 0.504 0.016 0.13 0.504
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may increase, resulting in a decrease in failures.
However, beyond a certain point, additional builds
may yield diminishing benefits. The rate of failure
reduction may slow down, indicating that other fac-
tors, such as code quality or environmental issues,
need to be addressed to further improve stability.

• Unstable or volatile codebase: If the codebase being
built and tested is inherently unstable or frequently
changing, it is possible that increasing the number
of builds could lead to a higher probability of
failures. Rapid code changes, frequent updates, or
complex integrations can introduce more oppor-
tunities for issues to arise. In such cases, a higher
number of builds may uncover more failures, high-
lighting the need for more rigorous testing and
better code management practices.

• Infrastructure limitations: The capacity and scal-
ability of the infrastructure supporting the CI
system can also influence the relationship between
the number of builds and failures. If the infras-
tructure is insufficient to handle a large number
of concurrent builds or lacks necessary resources,
it may lead to increased failure rates. Addressing
infrastructure constraints, such as upgrading hard-
ware or optimizing resource allocation, can help
mitigate the impact of higher build volumes on
failure rates.

The relationship between the number of builds and fail-
ures is instead context-dependent and can vary based on
project characteristics, development practices, and infras-
tructure. Understanding the specific dynamics at play in
a given environment is crucial to effectively managing
and optimizing the CI process. Continuous monitoring,
analysis, and adaptation are key to ensuring a stable and
reliable CI system, regardless of the relationship between
build numbers and failures. This being said, understanding
the relationship between the number of builds and the final
outcome of CI builds can provide valuable insights and
help improve the CI process. Here are some specific points
that highlight the importance of this relationship:

• Resource allocation and optimization: By analyzing
the relationship between the number of builds and
the final outcome, organizations can gain insights
into the resources required for successful CI builds.
It helps them determine the optimal number of
builds needed to achieve the desired outcome and
allocate resources accordingly. For example, if a
certain number of builds consistently lead to fail-
ure, it may indicate the need for additional testing
environments, hardware resources, or infrastruc-
ture improvements.

• Build stability and reliability: The relationship
between the number of builds and the final out-
come can shed light on the stability and reliability
of the CI system. If there is a high rate of build
failures early in the process, it suggests potential
issues with the build environment, code quality, or
integration problems. Identifying such patterns can
help teams diagnose and address the underlying

problems, leading to more stable and reliable CI
builds.

• Optimization of build frequency: CI systems often
involve running builds at regular intervals, such as
hourly, daily, or on every commit. Understanding
the relationship between the number of builds and
the final outcome can help optimize the frequency
of builds. If the analysis reveals that a certain num-
ber of consecutive successful builds significantly
reduces the chances of failure, organizations can
consider adjusting the build frequency to strike
a balance between detecting issues promptly and
minimizing unnecessary resource consumption.

• Performance monitoring and trend analysis: Mon-
itoring the relationship between the number of
builds and the final outcome over time enables
organizations to track performance trends. By
observing changes in the success rate, they can
identify improvements or deteriorations in the CI
process. For instance, if the success rate gradually
decreases over a period, it may indicate the accumu-
lation of technical debt or increasing complexity in
the codebase. Early detection of such trends allows
teams to take corrective actions and maintain the
efficiency and effectiveness of CI builds.

RQ2: The study shows that the status of the issue also
has a medium positive association with the final build
verdicts. This means that not only a large number of com-
mits and builds often led to CI build failure, but the final
status of the issue moderately contributed to identifying
the verdict of the CI builds. Additionally, a small positive
association is observed among the priority flags and the
success of the build.

The findings from RQ2, which indicate a medium pos-
itive association between the status of the issue and final
build verdicts, as well as a small positive association
between priority flags and build success, have several take-
aways and implications for the software engineering or CI
community, developers, and researchers. These include:

• Issue status and build verdicts: The study high-
lights that the status of an issue, such as open,
in progress, or resolved, moderately contributes to
identifying the verdict of CI builds. This suggests
that the progress and resolution of issues play a
significant role in the overall success or failure of CI
builds. Developers and software engineering teams
should prioritize timely issue resolution and ensure
that issues are appropriately tracked and managed
throughout the development process.

• Proactive issue management: The findings empha-
size the importance of actively monitoring and
managing the status of issues. Software engineering
teams should implement effective issue tracking
systems and workflows to ensure that issues are
promptly addressed and properly communicated
among team members. Regularly updating the sta-
tus of issues and monitoring their impact on build
outcomes can help in identifying potential issues
that may lead to build failures.
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• Importance of priority flags: The small positive
association observed between priority flags and
build success suggests that assigning appropriate
priority levels to issues can contribute to the overall
success of CI builds. Prioritizing critical issues and
addressing them with higher urgency and attention
can reduce the likelihood of build failures. Devel-
opers and project managers should consider the
priority flags as a useful mechanism for prioritizing
and managing issues effectively.

• Optimization of issue management processes: The
findings highlight the need for optimizing issue
management processes within the CI workflow.
This includes streamlining issue tracking, ensuring
clear communication among team members, and
establishing effective protocols for issue resolution.
Integrating issue management with the CI pipeline
can facilitate better coordination and decision-
making, ultimately improving the success rate of CI
builds.

• Further research opportunities: The findings provide
insights into the associations between issue status,
priority flags, and build outcomes.

Researchers can explore additional factors that
influence build verdicts, such as issue severity, team
collaboration, or the impact of issue resolution time
on build success. Further investigations can help in
developing more comprehensive models and approaches
for predicting and preventing build failures based on a
broader range of factors.

In summary, the findings from RQ2 emphasize the
importance of issue status and priority in relation to CI
build outcomes. These findings have implications for soft-
ware engineering and CI communities, highlighting the
need for proactive issue management, optimized processes,
and appropriate prioritization of issues. They also suggest
opportunities for further research to explore additional
factors and enhance the understanding of build failure
prediction and prevention.

6. RQ3 Statistical Analysis: Predicting CI
Failure-Inducing Changes

The answer to RQ2 statistically demonstrated that the
current status of user-requested issues has an acceptable
association with the final verdicts of CI builds. Issues with
the current status of in-progress, open, patch available, and
reopened are likely to be identified while the code changes
are happening and before the time that a build potentially
failed. Yet, the values of closed and resolved status are

most likely not available until the build is complete. As
such, this feature (issue’s status) is shown useful for the
prediction analysis of the CI build failures, only when the
implementation of the issue is not yet fully resolved.

For this reason, we further extended the study to mea-
sure the extent to which the selected features of the Pass
builds were associated with each other (rather than with
the build Fails). This allows us to identify the dependent
variables whose values increase and decrease relative to
each other.

6.1. Feature Interrelations of Failure-Inducing Changes

Contingency coefficient provides a basic picture of the
interrelation between two variables, statistically measur-
ing the strength of the relationship between the relative
changes of two nominal (categorical) variables.

To identify the presence of a latent relation among
pairs of change features, we measured the dependency of
each independent variable on the other variables, with the
purpose of possibly replacing the non-predictable features
with the more predictable ones. The removal of such rela-
tions, additionally, removes the conditions’ effects from
our further analysis.

Table VI displays the contingency coefficient matrix,
where each cell demonstrates the value of contingency
between each variable pair. The contingency matrix dis-
plays the (multivariate) frequency distribution of the
variables, and the coefficient is calculated between 0 and
1, where a larger number is representative of a tighter
association.

As shown, the build-commit and resolution-status pairs
are highly correlated with a coefficient of 0.7. This size
dependency is a relatively high correlation (denoted with
∗), representing that change in one variable would cause
change to another, so the model results fluctuate sig-
nificantly. While the high correlation among the counts
of build and commit is understandable, both values are
only identifiable after the changes and failure occurred.
However, an issue’s status indicates its current place in the
project’s workflow, but resolutions are the ways in which an
issue can be closed, completed, or resolved in many ways
[27]. As such, the resolution values are known before their
current status is known. The high and positive correlation
is understandable since an issue’s resolution is usually set
when the status is changed.

Fig. 5 shows the total number of builds counts individ-
ually for each possible value of the independent variables,
Priority, Status, and Resolution. As displayed, on average,
the builds failed more frequently for the issues with the
“Trivial” priority, the status of “Reopened,” and the reso-
lution of “Won’t Fix”.

TABLE VI: RQ3: Contingency Matrix

Feature #Commit Priority Status Resolution #Build

#Commit 1.00 0.11 0.119 0.08 0.70
Priority 0.01 1.00 0.122 0.08 0.08
Status 0.11 0.12 1.00 0.70 0.14

Resolution 0.08 0.08 0.70∗ 1.00 0.11
#Build 0.70∗ 0.08 0.14 0.12 1.00
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Fig. 5. Build Count for the independent variables, Priority, Status, and Resolution, respectively.

Please note that as the focus of paper is largely on
finding and comparing the discriminating ability of code
change features, rather than the classification ability of
different algorithms, we did not attempt to improve the
classification accuracy by adopting other classifiers or to a
base model. The study tends to instead identify predictable
features of the change to enable software engineers to
predict and prevent the build failures.

The study reveals a robust association between the
status and resolution of changes, as well as the counts
of builds and commits. These significant relationships
between independent variables and a specific dependent
variable necessitate their mitigation prior to training a clas-
sifier on the data. This step is crucial to avoid introducing
bias into the predictive model.

6.2. Model Training

We investigated whether training a binary classifier
allows us to predict the failure-inducing issues ahead
of time. For this purpose, we selected a probabilistic
classification algorithm, known as discriminant function
analysis (DFA). DFA is a statistical procedure that clas-
sifies unknown individuals and the probability of their
classification into a certain group, assuming that the two
different classes generate data based on different Gaussian
distributions.

Since the objective is to predict the CI build failures
before they occur, we attempted to select the independent
variables from the attributes of user-requested issues since
they are identifiable before the changes are applied and
failure occurs. Yet, to provide a baseline for comparison,
we assessed the trained model with attributes that were
only predictable for a subset of values.

6.3. Results and Discussion

The accuracy of this classification is reported in
Table VII, using 10-fold cross-validation. For the com-
parison purposes, we report the results once using the
identifiable attributes and once again with the attributes
that are identifiable only for some values before the actual
failure occurs but not the entire range of possible values.
As shown, the top part of the table represents the selected
dependent variable(s) and whether or not the variable(s)
is(are) predictable ahead of time. The bottom part displays
the count of the samples for each class of failed and
passed. Considering the Failed samples as negative and

passed instances as positive instances, then the first square
denoted with ∗ from left represents the number of true
positives as 3,166 (77.8%) records. These are the CI builds
which failed in reality and were correctly detected by the
classifier as failure-inducing builds by only using the prior-
ity tag of the posted issues as the discriminating variable.
The second the first square denoted with ∗, displays the
number of true positives. As shown, 26.6% of the passed
builds were correctly marked by the model. However, 2,870
successful builds were mistakenly marked by the classifier
as potential to fail by the model while they pass in real
life. While this represents 73.4% false positives, it leads
to leaving out, marking only 22.2% of the actual failure-
inducing builds.

Please note that in this problem, we are more inter-
ested in identifying the potentially failing builds, which
will consequently delay the development process. While
false positives require developers’ effort to be filtered out,
improve the possibility to identify the changes which are
the most likely to pass. This said the model yields a higher
chance of detecting CI build failures (recall of 77.78%) and
a precision of about 52.45%. Including resolution (par-
tially predictable), the recall and precision are increased to
78.15% and 52.51%, respectively.

An effort to improve precision is simply obtainable
through setting a higher probability threshold to tag failing
builds, decreasing the number of false positives. However,
this will also negatively impact the recall. The balance
between the two metrics, precision and recall, largely relies
on the context of the project, as well as the resources
available in a software project. For instance, safety-critical
software may expect a more pessimistic approach (a higher
threshold), but instead require a more expensive process
for filtering the instances which were mistakenly marked
as potentially-failing builds.

RQ3: By utilizing a sufficient sample size, we achieved
statistical prediction of failure-inducing changes based
on the priority of user-posted issues, yielding a recall
of approximately 78% and precision of approximately
53%. Additionally, comparable performance values were
obtained when considering both the priority and resolu-
tion of the issues.

Note that while the importance of recall or precision
depends on the specific context and requirements of the
software engineering or CI application, if the primary goal
is to identify as many failure-inducing changes as possible,
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TABLE VII: RQ3: DFA’s Prediction Results with Possible-to-Know, Not-Possible-to-Know, Both, and All Dependent Variables

Independent variables

Predictable Partially predictable

Priority Priority & resolution Priority & status All

Ground truth Predicted independent value

Failed Passed Failed Passed Failed Passed Failed Passed

Fail 3,166∗ (77.8%) 904 (22.2%) 3,180∗ (78.2%) 889 (21.8%) 2,643∗ (64.9%) 1,427 (35.1%) 2,076∗ (51.0%) 1,993 (49.0%)
Pass 2,870 (73.4%) 1,042∗ (26.6%) 2,875 (73.5%) 1,037∗ (26.5%) 2,107 (53.9%) 1,805∗ (46.1%) 1,015 (25.9%) 2,897∗ (74.1%)

the cost of some false positives, then maximizing recall
could be more important in this case than maximizing
precision. However, maintaining an acceptable level of
precision ensures that developers can effectively utilize
the approach without becoming overwhelmed by excessive
false negatives.

The findings of RQ3, which demonstrate the ability to
statistically predict failure-inducing changes based on the
priority and resolution of user-posted issues, have several
takeaways and implications for the software engineering or
CI community, developers, and researchers. These include:

• Enhanced issue prioritization: The findings sug-
gest that considering the priority of user-posted
issues can be valuable in predicting failure inducing
changes. Software engineering teams and devel-
opers can prioritize their efforts based on issue
priority, focusing on high-priority issues that are
more likely to result in build failures. This can
lead to more efficient resource allocation and better
issue management practices.

• Proactive issue resolution: By leveraging the pre-
dictive model, developers can take a proactive
approach to resolving issues with a higher likeli-
hood of causing build failures. This allows them to
address critical issues in a timely manner, poten-
tially reducing the overall number of build failures
and improving the stability of the CI process.

• Refining classification algorithms: The findings
highlight the potential of incorporating issue pri-
ority and resolution as important features in
classification algorithms used for failure predic-
tion. Researchers can further explore and refine
these algorithms to improve the accuracy and
performance of predictive models. This involves
investigating additional factors or features that may
contribute to failure prediction, such as issue sever-
ity or the impact of other contextual information.

• Continuous improvement of CI practices: The
findings provide insights into the relationship
between user-posted issue characteristics and
failure-inducing changes. This encourages software
engineering teams to continuously evaluate and
optimize their CI practices. By monitoring and
analyzing the performance of the predictive model,
teams can identify areas for improvement, refine
their processes, and make informed decisions to
minimize build failures.

• Generalizability and transferability: The find-
ings highlight the potential generalizability and

transferability of the predictive model to other
software engineering or CI contexts. Developers
and researchers can explore the applicability of the
model in different projects, development environ-
ments, or domains to enhance their understanding
of failure prediction and develop best practices
tailored to specific contexts.

In summary, the findings of RQ3 provide insights into
the prediction of failure-inducing changes based on issue
priority and resolution. These findings have implications
for software engineering or CI communities, emphasiz-
ing the importance of issue prioritization, proactive issue
resolution, refining classification algorithms, continuous
improvement of CI practices, and exploring the generaliz-
ability and transferability of the predictive model.

7. Threats to Validity

A threat to construct validity in our study is the potential
bias caused by 98 software projects we used. We minimized
this threat by selecting a dataset which contained projects
relevant to a wide range of applications and functionalities.
Yet, further cross-dataset validations are necessary to draw
certain conclusions.

A threat to internal validity contains categorizing the
issues based on the issue types. The issues could be assigned
to the wrong category, or mistakenly a wrong issue tag
could be selected by the developers [28]. We only selected
issue types with those tags which clearly mentioned the
context of the change, to minimize this threat while this
may lead to removing some issues that could fall under our
selected categories. Another bias was raised because of the
uneven sample size among different types of issues in the
database. This could influence the statistics we provided
for the group containing all the issue types. We tried to
apply a set of pre-processing techniques to minimize other
statistical threats as much as possible, as discussed in the
paper. In addition, while some artifact counts were uneven
among the four-issue types, each type was individually
balanced in terms of successful and failed build counts.
Another bias may occurred due to the dataset incomplete
Travis builds and jobs tables, which excluded information
for multiple of the projects. While our statistical studies
consider the amount of observed samples to measure evi-
dence, yet the reported results are only on a subset of the
build jobs.

The external validity includes the selection of open-
source projects which might not be representative of or
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generalizable to closed-access commercial projects. In our
future work, we will conduct experiments with additional
projects.

8. Related Works

This section shares a brief summary of the research
related to finding the root causes of, predicting and pre-
venting the software build failures. Further, we share the
related works which specifically studied CI builds. We
provide literature on using profiles for data mining tasks, in
particular in the software domain. Finally we summarized
the works in the impact of human factors in CI builds, as
well as the studies which particularly analyzed Travis CI.

8.1. Finding the Root Causes of Build Failures

Several prior studies have investigated the underlying
causes of build breaks. Research on open source projects
indicated project build failures happen mainly due to unit
testing failures [29]; a group of researchers found that
builds generally fail because of failed test cases [12], and
similarly, a research study specified testing failures, compi-
lation errors, and poor code quality as the most recurrent
causes of build failures in Microsoft projects [4]. Another
study identified poor code quality, identified with static
analysis techniques, as the primary reason of failures [30].

This research instead associates build failure with code
change type and identifies common features contributing
to the failed builds.

8.2. Predicting/Preventing Build Failures
Saidani et al. [10] proposed a search-based approach,

multi-objective genetic programming (MOGP) technique,
to predict CI build failures. The model aims to identify the
failures through finding the best combination of CI build
features.

Although the approach attempts to predict CI build
failures, the primary focus is on generating a set of rules for
the establishment of good practices by software developers.

Xia and Li [13] developed multiple classifiers to predict
build failures for TravisTorrent projects, identifying the
majority of the metrics to be specific to TravisTorrent
database. The results indicated that the predictive models
performed well for cross-validation scenarios but failed to
perform well in on-line scenarios. Hassan and Wang [9]
built a prediction model which performed with an average
F-measure of 78% in cross-project prediction scenarios.
Similarly, the majority of the metrics selected to build the
models were features of the TravisTorrent environment.
The rest of the metrics were particularly defined at the
method-level changes, such as method body change count
and method signature change count. Rausch et al. [31] con-
ducted an empirical study of CI builds only for Java-based
applications. Their analysis had two folded directions. The
first one intends to identify the types of errors in CI builds,
while the second part aims to develop a general process and
specific CI metrics for CI build failures.

Ni and Li [32] proposed a cost-effective approach to
predict build outcomes using cascaded classifiers based
on the commit information from Version Control systems.
They extracted several features, such as last build result,

time elapsed, etc., to train the cascaded classifier. Chen et
al. [33] proposed a history-aware approach to predict CI
build outcomes that can help to get fast integration feed-
back and also reduce integration costs by analyzing build
logs and changed files closely related to historical builds.
Saidani et al. [34] proposed a CI build failure prediction as
a time series problem using LSTMRMM based model by
considering various features such as number of commits,
number of files added, deleted, and so on.

Compared to the above-mentioned works, this work
searches for a set of generic features of the code changes
and their initiating user requests, which more frequently
lead to build failures. This research builds a predictive
model whose features are not specific to a specific frame-
work and, therefore, are generalizable to any environment.

8.3. Study/Analysis/Impact of CI Builds

Zhao et al. [35] performed a qualitative study to identify
how the rise of CI practices changed software development
practices in general. Several research studied and analyzed
the impacts of CI practices on different software develop-
ment approaches from multiple perspectives, such as code
review [36], [37] and delivery time of pull requests [38].
The aforementioned research significantly contributed to
better analyzing the software development environments
which practice CI and in providing insight about the
impacts of CI applications. Compared to these works, this
research mainly focuses on predicting the final verdict of
CI builds according to the characteristics of the precedent
changes, resulting in taking preemptive actions to prevent
the halt of the development process, if necessary. In addi-
tion to the above-mentioned works, Zolfagharinia et al.
[39] studied the CI build inflation by analyzing the relation-
ship between Runtime Environments (RE) and Operating
Systems (OS) and build failures on 30 million build records
of CI environments. Their result indicates, the builds on
Perl packages act differently on different Res and OSes.
Paixao et al. [40] conducted a study to investigate the
relationship between Non-functional requirements (NFR)
and Travis-CI build statuses. However, they focused on
NFR related build failures mainly where they categorized
their types and duration to fix, which is a different area of
research.

8.4. Creating Developer Profile

Constructing and using profiles for software artifacts
is an active research area. One common application is to
extract developer profiles from publicly available sources.
For instance, multiple works created a profile for develop-
ers active on GitHub [41], [42]. Mining developer profile
data is also used to match job advertisements [43], find
experts [44], [45], measure developers’ contributions [46],
personalizing recommendations [47], identify the gender
and nationwise diversity of the team [48], recommending
relevant project [49], exploring the patterns of social behav-
ior [50] and so on. Bao et al. [51] conducted a study to
find long-time contributors for open-source applications
based on their previous activities on Github. Tools like
CVExplorer [52] and CPDScorer [53] are also developed
to mine technical skills by the developers. Xiong et al. [54]
explored cross-site developer behavior on StackOverflow
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and GitHub T-graph analysis, LDA-based topics cluster-
ing, and cross-site tagging. Souza and Silva [55] analyzed
Travis builds and their comments to see if negative senti-
ments have some impact on Travis builds.

To compare our work with those mentioned, this
research focused on the issues’ profile in order to find the
potential relations between the issue types, their conse-
quent changes, and their features which were more likely
to contribute to the CI build failures.

8.5. Human Factors in CI Builds

Studies on the impacts of human factors on the suc-
cessful build process are less common, but there has been
recent progress. For instance, Wolf et al. [56] studied
the association of build fails with the social factors of
developers. Using social network analysis, they trained a
model to predict whether an integration will fail based on
its developers’ communications. Other researchers stud-
ied features related to relationships between developers
of build, such as communication, trust, and conflict. For
instance, Phillips et al. found that social challenges of build
team engineers impact their effectiveness and therefore,
proposed to address social impediments in build teams in
order to improve the build process [57].

Although mining data from software repositories,
including Travis CI and Pull requests, is not new research,
creating issue profiles from the build reports has not
yet been explored to the best of our knowledge. Since
SmartSHARK [17] database integrates data from multiple
sources, such as GitHub, Travis CI, Issue trackers, we used
the data to study whether we can build issue profiles to later
foresee the verdict of a CI build according to the nature
of the change. In contrast, this work tends to emphasize
the potential relations between the issue types, consequent
changes, and their features, which contribute more to the
build failures so that potential failures can be predicted and
prevented in advance.

9. Conclusion and Future Work

Continuous Integration (CI) is frequently practiced to
provide the developers with the functionality to merge their
code changes into a central repository to be automati-
cally built and incorporated into the development process.
During the building process, as an important part of the
software development process, identifying the recurrent
causes of the build failure allows to prevent their occur-
rence.

To this end, we analyzed the impact of the major main-
tenance change types on the build verdicts of 98 Apache
projects. The study statistically showed that addressing the
issues which required a bug fix led to the largest percentage
of the CI build failures.

Further, we observed that the issues’ priority tags have a
positive association with the success of the build, while the
issues’ status and resolution were additionally associated.
This led to building multiple mathematical models that
detected the builds that were highly likely to fail, only
according to the priority of their associated issues, as
well as their priority and resolution. These independent

variables are more feasible to be known before the CI build
fails in the real world.

In the future, we plan to collect additional software
projects to include a larger set of logs related to building
job records. Extending our dataset, we intend to study
dependencies among a larger set of attributes and change
types. Additionally, we want to parse Travis logs to find the
root causes of CI build failures.
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[7] Sulír M, Bačíková M, Madeja M, Chodarev S, Juhár J. Large-scale
dataset of local java software build results. Data. 2020;5(3):86.

[8] Lou Y, Chen J, Zhang L, Hao D, Zhang L. History-driven build
failure fixing: how far are we? Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis,
pp. 43–54, 2019.

[9] Hassan F, Wang X. Change-aware build prediction model
for stall avoidance in continuous integration. 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 157–62, IEEE, 2017.

[10] Saidani I, Ouni A, Chouchen M, Mkaouer MW. Predicting contin-
uous integration build failures using evolutionary search. Inf Softw
Tech. 2020;128:106392.

[11] Kerzazi N, Khomh F, Adams B. Why do automated builds break?
an empirical study. 2014 IEEE International Conference on Software
Maintenance and Evolution, pp. 41–50, IEEE, 2014.

[12] Beller M, Gousios G, Zaidman A. Oops, my tests broke the build:
An explorative analysis of travis CI with GitHub. 2017 IEEE/ACM
14th International Conference on Mining Software Repositories
(MSR), pp. 356–67, IEEE, 2017.

[13] Xia J, Li Y. Could we predict the result of a continuous integration
build? an empirical study. 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C), pp.
311–5, IEEE, 2017.

1https://github.com/SamihaShimmi/CIBuildFailure.

Vol 4 | Issue 2 | June 2024 14

https://cpl.thalesgroup.com/
https://cpl.thalesgroup.com/
https://circleci.com/continuous integration/
https://github.com/SamihaShimmi/CIBuildFailure


Shimmi and Rahimi On Association of Code Change Types and CI Build Failures in Software Repositories

[14] Log parser plugin. 2024. Accessed: 2024-01-01. Available from:
https://wiki.jenkins.io/display/JENKINS/Log+Parser+Plugin.

[15] Macho C, McIntosh S, Pinzger M. Automatically repairing
dependencyrelated build breakage. 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 106–17. IEEE; 2018.

[16] Beller M, Gousios G, Zaidman A. Travistorrent: synthesizing travis
CI and GitHub for full-stack research on continuous integration.
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pp. 447–50. IEEE; 2017.

[17] Trautsch A, Trautsch F, Herbold S. MSR mining challenge: the
SmartSHARK repository data. Proceedings of the International
Conference on Mining Software Repositories (MSR 2022), 2021.

[18] Dashboard System. 2024. Accessed: 2024-01-01. Available from:
https://issues.apache.org/jira/secure/Dashboard.jspa.

[19] Documentation of the SmartSHARK database. 2024. Accessed:
2024-01-01. Available from: https://smartshark2.informatik.uni-
goettingen.de/.

[20] Karl Pearson FRS. X. On the criterion that a given system of
deviations from the probable in the case of a correlated system of
variables is such that it can be reasonably supposed to have arisen
from random sampling. London, Edinburgh, Dublin Philos Mag J
Sci. 1900;50(302):157–75. doi: 10.1080/14786440009463897.

[21] Cramer H. Mathematical methods of statistics. In Cráer Mathemat-
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