
Copyright: © 2024 Alzahrani. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original source is cited.

European Journal of Information Technologies and Computer Science
Vol 4 | Issue 3 | August 2024
ISSN 2736-5492

RESEARCH ARTICLE

Investigating the Role of Software Quality
Managers and Software Developers in

Creating Code Smells

Abdullah Abdualrahman H. Alzahrani*

ABSTRACT

Software code smells are regarded as signs of potential problems in code
design or implementation, they might not affect functionality but impact
future maintenance and readability. However, refactoring is a process of
code transformation that improves code structure without changing code
behavior. This process occurs in the stage of software maintenance where
software developers and software quality managers/engineers must work
closely in order to identify code smells and plan for refactoring. This
research aims to investigate the role of quality managers and software
developers in creating code smells.

Keywords: Code smells, Software development, Software maintainability,
Software quality.

Submitted: July 09, 2024

Published: August 19, 2024

10.24018/ejcompute.2024.4.3.131

Departments of Computers, Engineering
and Computers College, Alqunfuda Umm
Al Qura University, Saudi Arabia.

*Corresponding Author:
e-mail: aahzahrani@uqu.edu.sa

1. Introduction

Software code smells are the red flags in the code. They
might not affect the current functionality of the software
system [1], [2]. Throughout the software development pro-
cesses, quality assurance is a crucial activity [3]–[5]. One of
the activities in quality assurance is checking or detecting
code smells during proactive maintenance [6].

This research focuses on the investigation of the impact
made by both software quality managers and software
developers towards the existence of code smells. To
effectively conduct the data collection, two classes of
participants are targeted for this research purpose. The
participants will be provided with a set of questions in the
form of a questionnaire.

This paper is structured as follows. First, general back-
ground and discussion of related work are provided and
explained. Secondly, the research questions, along with
the research methodology, are explained and elaborated.
Thirdly, the main findings of this research are illustrated
and discussed. Finally, the conclusions on the findings and
the limitations of this research are drawn and explained.

2. Related Work and Background

Software development is not a straightforward task
[7]. Different methodologies are introduced and used for

software development. These methodologies can be cate-
gorized as traditional, dynamic, and adaptive [8], [9]. The
most common methodology nowadays is Agile, which is an
adaptive methodology [8], [10], [11].

Software quality can be defined as the extent to which
the software meets the needs and expectations specified in
the requirements of the software [12]–[15]. When consid-
ering software quality, many quality attributes are shaping
the software quality. One of these quality attributes is
Maintainability, which can be regarded as the extent to
which the software can be altered for corrections, improve-
ments, and/or changes of requirements [16], [17].

Maintenance is regarded as the process which takes
place after the delivery of software in order to fix or change
the software for improvement or requirement change [11],
[18], [19]. In addition, the most famous maintenance activ-
ities are proactive and reactive maintenance. Proactive
maintenance is the type of maintenance to perfect the code,
whereas reactive maintenance is the type to fix the code [6].

Software code smells are regarded as signs of future
issues in code design or implementation; however, soft-
ware functionalities might not be affected at the time of
detection, but code smells might affect the future main-
tainability and readability of the software code [20]–[24].
Therefore, the process of renovating these code smells
might be crucial and is termed as software refactoring,
which is one of many activities in software development

Vol 4 | Issue 3 | August 2024 15

https://crossmark.crossref.org/dialog/?doi=10.24018/ejcompute.2024.4.3.131&domain=pdf
http://dx.doi.org/10.24018/ejcompute.2024.4.3.131
mailto:aahzahrani@uqu.edu.sa

Investigating the Role of Software Quality Managers and Software Developers in Creating Code Smells Alzahrani

in specific maintenance activities and it is a code trans-
formation process that improves code structure without
changing code behavior [1], [2], [24]–[26].

Many have reviewed the topic of code smells [27]–[32].
The reviews uncover the main topics related to code smells.
These topics can be summarized in the following: 1) code
smells understanding, 2) code smells impact, 3) code smells
catalogs, 4) code smells detection, 5) code smells refactor-
ing. In addition, he explained some of the challenges and
related aspects of code smells such as fixing, prediction,
and rating of code smells.

Many have introduced their lists or catalogs of code
smells [22], [33]–[35] in different types of software projects.
In addition, new code smells have been introduced and val-
idated. This shows that code smells are not fixed; however,
new types emerge as technology improves and software
becomes more complex.

Many have introduced their approaches to detect or
predict code smells in the source code [20], [36]–[42]. Some
of these approaches are automated with tool support, and
others are not. In addition, it is worth noting that machine
learning algorithms are common to be used an automated
code smell detection. However, a lack of maturity might
exist in the approaches that are offered.

Pecorelli et al. [43] have offered a new approach for
prioritizing code smells according to their criticality. The
approach relies on machine learning and developers under-
standing of the code smells. The authors preferred to name
this approach developer-driven. The approach has been
compared to two other similar approaches [44], [45], and
the authors have reported an outperformance of their
approach.

Alfadel et al. [46] have studied the relationship between
the existence of design patterns and the existence of code
smells. The authors considered 20 software design patterns
and 13 common code smells in their investigation. The
investigation was carried out on 10 open-source codes of
Java. The outcomes of this investigation showed a strong
relation between some of the design patterns and certain
code smells. In addition, the author reported that entities
of code that form a design pattern probably do not have
code smells.

Muse et al. [47] have investigated the Impact of SQL
code smells in Data-Intensive Systems. The authors have
conducted an empirical investigation on 150 software
projects to study the frequency and impact of SQL code
smells and compare them with the common code smells
in code. The findings of their work were that they noticed
a widespread of SQL code smells and noticed that they
often occur earlier in the project development phases and
remained not fixed.

Han et al. [48] have studied the relationship between
the identification of code smells and the actions taken by
software developers. The authors have conducted an exper-
iment on 2 OpenStack projects and collected over 1000
reviews of code smells out of over 19000 reviews, which
have been done by, perhaps, software quality engineers
or software professionals who are interested in software
quality. The authors concluded that code smells are not
often identified when code is checked or reviewed.

Yamashita et al. [49] have investigated the factors
which might affect the maintenance of software code. The
authors consider the work in [50], [51] which offer a set of
factors that might affect maintainability of software code.
In addition, the authors offer new factors after conducting
an empirical study on 6 developers with 4 software projects
and discovered a total of 13 factors.

Furthermore, Yamashita et al. [52] conducted a survey
of 85 software professionals to investigate the understand-
ing of code smells and concluded that a considerable
number of professionals showed ignorance of code smells.
In addition, the authors reported that professionals
showed a lack of interest in building the code with consid-
eration of avoiding the code smells.

3. Research Questions

This research focuses on investigating the role of soft-
ware quality managers in software developers’ creation of
code smells. Therefore, two main research questions have
been formulated:

1) Are the code smells checks a regular action in the
software development processes?

2) What are the reasons behind creating code smells in
source code by software developers?

Answering these questions requires conducting surveys to
collect data and analyze it to draw conclusions. Therefore,
two types of participants are needed to participate in this
research, specifically software quality managers and soft-
ware developers.

4. Methodology

In this research a questionnaire was designed in order
to collect the required data to answer the research ques-
tions. The questionnaire consists of two parts. The first
part collects the consent of participation and some per-
sonal information such as gender, experience, and job
titles. Based on the participants’ responses to the job title
question in the first part, the second part displays the
appropriate questions in order to collect either the software

Fig. 1. Division of participants based on gender and job title.

Vol 4 | Issue 3 | August 2024 16

Alzahrani Investigating the Role of Software Quality Managers and Software Developers in Creating Code Smells

developers’ opinions or the software quality managers’
opinions. Google Forms was used to create the question-
naire, which was later sent to the intended participants via
emails and direct text messaging.

The questionnaire was sent to 150 participants, and the
collected responses were 52. Fig. 1 illustrates the distribu-
tion of the responses based on the job titles and the gender
of participants. It can be seen from Fig. 1 that around 85%
of respondents are males. On the other hand, 73% of the
respondents are developers.

The questionnaire is built with a Likert scale question,
which allows the participants to specify their answers on
a scale from 0 to 5, where 0 is never and 4 is always. The
respondents are allowed to opt for the not applicable as 5.
This scale is for the questions that are related to software
quality managers and software developers regarding the
Code Smells Checks frequency. However, other questions
were asked using a scale from 0 to 4. Finally, the question
for the software developers to rate their knowledge on the
code smells is in addition using the scale from 0 to 4 where
0 refers to none and 4 refers to excellent.

5. Results and Discussion

In this section, the main findings of our questionnaire
will be presented and discussed. The first subsection will
show the results of the questions which were answered
by the Software quality managers and software develop-
ers regarding the frequency of checks for code smells in
different programming languages. The second subsection
will illustrate the results of the questions that have been
answered by Software quality managers regarding their
perspectives. The third subsection will show and discuss
the results of questions which have been answered by the
software developers.

5.1. Frequency of Checks for Code Smells in Different
Programming Languages

Participants have been asked to specify the scale of fre-
quency of checks for code smells in several programming
languages, which are Java, JavaScript, C, C++, C#, Visual
Basic, and Python. The following are the presentations and
discussions of these findings.

It can be noticed in Fig. 2 that around 37% of soft-
ware developers participants specified that it is always or
often that they conduct a code smell checks in their Java
source code. However, the same portion of the software

developers are stating that they have not conducted any
code smells checks. This might lead to a reduction in the
number of Java programmers. On the other hand, 50% of
software quality managers specified rare or never as the
frequency of code smells checks in source code made using
Java programming language.

With regards to checks for code smells in source code
made in JavaScript, it is obvious from Fig. 3 that 56% of
software developers expressed that they often or always
conducted checks. However, software quality managers
stated the opposite opinion, as 57% of them stated that
they rarely or never carried out code smells checks in
source code made using Java programming language.

In Fig. 4, some agreement appears between software
developers and software quality managers, as they tend to
rarely or never conduct code smell checks in source code
made in C programming language, with 44% and 72%,
respectively. Moreover, It is important to note that 32% of
software developers stated “not applicable” for this matter.

Considering source codes made in C#, as seen in Fig. 5
66% of software developers and 64% of software quality
managers have answered with “rarely” or “not applicable.”
However, 19% of software developers stated that they often
or always conducted code smells checks on source code
made in C#. On the other hand, 21% of software quality
managers stated that they often conduct code smells checks
on source code made in C#.

Fig. 6 shows that 71% of software quality managers
specified the answer of the frequency they conduct code
smells checks on source code made in C++ programming
language as “rarely,” “never,” or “not applicable.” On the
other hand, 52% of software developers tend to have the
same answer. It is worth noting that 29% of software
developers stated that they always or often conduct code
smells checks for C++ projects.

With regards to checks for code smells in source
code made in Visual Basic programming language, Fig. 7
illustrates that software quality managers and software
developers have specified the answers for frequency as
“never” or “not applicable,” with percentages of 64% and
55%, respectively. However, software quality managers
and software developers have specified the answers for
frequency as “often,” with percentages of 21% and 11%,
respectively.

Fig. 2. Frequency of checks for code smells in Java.

Vol 4 | Issue 3 | August 2024 17

Investigating the Role of Software Quality Managers and Software Developers in Creating Code Smells Alzahrani

Fig. 3. Frequency of checks for code smells in JavaScript.

Fig. 4. Frequency of checks for code smells in C.

Fig. 5. Frequency of checks for code smells in C#.

Fig. 6. Frequency of checks for code smells in C++.

As can be seen in Fig. 8, software quality managers
and software developers have specified the answers for
frequency for checking code smells in projects in Python
source codes as “often” or “always,” with percentages of
43% and 37%, respectively. Interestingly, the other por-
tion of the software quality managers participants chose
“rarely” or “never.” However, 42% of software developers
specified “never” or “not applicable” as their answers.

5.2. Software Quality Managers’ Perspectives

In this subsection, the results of the questions which have

been provided to the software quality managers are illus-

trated and discussed. These questions are to measure the

impact of software developers in imposing code smells and

to measure the impact of software code smells awareness

encouraged by software quality managers.

Vol 4 | Issue 3 | August 2024 18

Alzahrani Investigating the Role of Software Quality Managers and Software Developers in Creating Code Smells

Fig. 7. Frequency of checks for code smells in Visual Basic.

Fig. 8. Frequency of checks for code smells in Python.

Fig. 9. Software quality managers’ opinions on developers
creating code smells.

Fig. 10. Frequency of need for Code Smell explanations to developers.

Fig. 11. Software developers rate of knowledge in code smells.

Fig. 9 demonstrates the opinion of the software qual-
ity managers on the frequency that software developers

Fig. 12. Frequency of proactive maintenance.

contribute to the production of code smells. It is obvious
from Fig. 9 that 42% of software quality managers believe
that code smells are always or often caused by software
developers.

On the other hand, 50% of software quality managers,
as can be seen in Fig. 10, admitted that they were rarely or
never required to explain or raise awareness of code smells
for software developers. The results shown in Figs. 9 and
10 can be linked in order to find correlation between lack
of awareness raise and developers making code smells.

5.3. Software Developers’ Perspectives

In this subsection, the results of the questions which
were given to software developers are demonstrated and
discussed. The questions are to investigate the software
developers’ knowledge of code smells and the frequency of
proactive and reactive code maintenance that the develop-
ers conduct.

Fig. 11 shows that 43% of software developers rated
their knowledge of code smells as “high” or “excellent.”
However, 59% of developers articulated that their knowl-
edge of code smells is “medium” or less. This shows that
knowledge of code smells is not high around software
developers.

Vol 4 | Issue 3 | August 2024 19

Investigating the Role of Software Quality Managers and Software Developers in Creating Code Smells Alzahrani

Fig. 13. Frequency of reactive maintenance.

With the difference discussed earlier in this paper
between proactive and reactive maintenance, software
developers were asked to specify the frequency of con-
ducting each of them. Figs. 12 and 13 illustrate that more
than 60% of software developers either always or often
conduct software maintenance proactively or reactively.
This might link to the results shown in Fig. 11, as 59%
of developers articulated that their knowledge of code
smells is “medium” or less. It seems that developers cannot
distinguish proactive and reactive maintenance.

6. Conclusion

This study shows the results of the investigation of the
impact made by both software quality managers and soft-
ware developers towards the existence of code smells. The
results of the investigation can be summarized as follows.

The participants’ answers for the frequency of code
smells checks for several well-known programming lan-
guages were illustrated and discussed. Interesting results
have been discovered. In general, code smells checks are
not regular action in software development processes. In
addition, an interest in code smells check might be noticed
in source code made in Java, JavaScript, C++, and Python.

In addition, it can be claimed that there is a relationship
between software developers’ awareness of code smells,
and the judgment of the software quality managers of
developers being the reason behind more code smells in
source codes.

Furthermore, the software developers’ knowledge on
code smells and types of maintenance seems not satisfac-
tory and might be a reason behind producing code smells
in software source codes. From the discussed results in
the previous sections, it can be seen clearly that there is a
gap between software development and software quality
assurance.

The limitations of this study can be seen in the num-
ber of participants. In order to generalize the results and
conclusions, more participants are required. However, the
current number allows us to hold the lead for the case,

and the current conclusions are valid as initial conclusions.
In addition, it might be better to have an equal number
of software quality managers to the number of software
developers.

Acknowledgment

I would like to express my special thanks and gratitude
to my university (Umm Al Qura University), which gave
me the golden opportunity to conduct this research on the
topic of software engineering in specific software quality
assurance.

Appendix

TABLE I: Survey on Opinion of Software Quality Manager
and Developers

Question Type of
response

1. Select your job role? Software
quality

manager
Software
developer

2. Select your experience range? 1 year to 6
years

6 years to
10 years

Over 10

3. How often do you go through code smell check in source
code made in Java programming language?

0–Never

4. How often do you go through code smell check in source
code made in JavaScript programming language?

1–Rarely

5. How often do you go through code smell check in source
code made in C programming language?

2–
Sometimes

6. How often do you go through code smell check in source
code made in C# programming language?

3–Often

7. How often do you go through code smell check in source
code made in C++ programming language?

4–Always

8. How often do you go through code smell check in source
code made in Visual Basic programming language?

5–Not
applicable

9. How often do you go through code smell check in source
code made in Python programming language?

Vol 4 | Issue 3 | August 2024 20

Alzahrani Investigating the Role of Software Quality Managers and Software Developers in Creating Code Smells

TABLE II: Survey on Opinion of Software Quality Manager

Question Type of response

1. How often developers create code smells? 0–Never
2. How often do you need to explain software code smell to developers? 1–Rarely

2–Sometimes
3–Often

4–Always

TABLE III: Survey on Opinion of Developers

Question Type of response

1. Rate your knowledge of software code smell in general? 0–None
1–Low

2–Medium
3–High

4–Excellent
2. How often do you go through Proactive Maintenance? (Address code smells and potential problems before

they cause issues)
0–Never
1–Rarely

3. How often do you go through Reactive Fixes? (Address critical issues like bugs, performance bottlenecks, or
major code changes urgently.)

2–Sometimes
3–Often

4–Always

Conflict of Interest

The authors declare that they do not have any conflict
of interest.

References

[1] Fowler M. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 2018. Accessed: Jun. 05, 2024.
[Online]. Available from: https://books.google.com/books?hl=en&
lr=&id=2H1_DwAAQBAJ&oi=fnd&pg=PT14&dq=Improving+t
he+Design+of+Existing+Code&ots=NhxxvhkXOX&sig=oQBKI
vLpmxsliM-AW4FjV0ODSLc.

[2] Brown WH, Malveau RC, McCormick HWS, Mowbray
TJ. AntiPatterns: refactoring Software, Architectures, and
Projects in Crisis. John Wiley & Sons, Inc, 1998. Accessed:
Jun. 05, 2024. [Online]. Available from: https://dl.acm.org/doi/
abs/10.5555/280487.

[3] Kassie NB, Singh J. A study on software quality factors and metrics
to enhance software quality assurance. Int J Product Qual Manag.
2020;29(1):24. doi: 10.1504/IJPQM.2020.104547.

[4] Felderer M, Ramler R. Quality assurance for AI-based systems:
overview and challenges (Introduction to interactive session).
Softw Qual Future Perspect Softw Eng Qual. 2021;404:33–42. doi:
10.1007/978-3-030-65854-0_3.

[5] Pargaonkar S. The crucial role of inspection in software quality
assurance. J Sci Technol. 2021;2(1):70–7.

[6] Canfora G, Cimitile A. Software maintenance. Handbook Softw
Eng Knowl Eng. 2001;1:91–120. doi: 10.1142/9789812389718_0005.

[7] Basili VR. Software development: a paradigm for the future.
[1989] Proceedings of the Thirteenth Annual International Com-
puter Software & Applications Conference, pp. 471–85, IEEE, 1989.
Accessed: Jun. 05, 2024. [Online]. Available from: https://ieeexplore.
ieee.org/abstract/document/65127/.

[8] Abrahamsson P, Salo O, Ronkainen J, Warsta J. Agile soft-
ware development methods: review and analysis. arXiv. 2017.
Accessed: Jun. 05, 2024. [Online]. Available from: http://arxiv.org/
abs/1709.08439.

[9] Sawyer S, Guinan PJ. Software development: processes and perfor-
mance. IBM Syst J. 1998;37(4):552–69.

[10] Barroca L, Dingsøyr T, Mikalsen M. Agile transformation: a
summary and research agenda from the first international work-
shop. In Agile Processes in Software Engineering and Extreme
Programming—Workshops. Hoda R. Ed. Cham: Springer Interna-
tional Publishing, 2019. pp. 3–9. doi: 10.1007/978-3-030-30126-2_1.

[11] Sommerville I. Software Engineering. 10th ed. Boston: Pearson,
2015.

[12] Miguel JP, Mauricio D, Rodriguez G. A review of software quality
models for the evaluation of software products. Int J Softw Eng
Appl. 2014 Nov;5(6):31–53. doi: 10.5121/ijsea.2014.5603.

[13] IEEE Standard Boaed. IEEE Standard Glossary of Software Engi-
neering Terminology. New York, N.Y: Institute of Electrical and
Electronics Engineers, 1990.

[14] Mamone S. The IEEE standard for software maintenance.
ACM SIGSOFT Softw Eng Notes. 1994 Jan;19(1):75–6. doi:
10.1145/181610.181623.

[15] Samadhiya D, Wang S-H, Chen D. Quality models: role and
value in software engineering. 2010 2nd International Conference
on Software Technology and Engineering, pp. V1–320, IEEE, 2010.
Accessed: Jun. 05, 2024. [Online]. Available from: https://ieeexplore.
ieee.org/abstract/document/5608852/.

[16] ISO 9241-11. ISO 9241-11:2018(en), Ergonomics of human-system
interaction—Part 11: Usability: Definitions and concepts. 2018.
Accessed: Jan. 25, 2020. [Online]. Available from: https://www.iso.
org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en.

[17] International Organization for Standardization. I. ISO, I. FDIS.
25020. Software Engineering-Software Product Quality Require-
ments and Evaluation (SQuaRE)-Measurement Reference Model
and Guide. Geneva, Switzerland: ISO; 2007.

[18] Despa ML. Comparative study on software development method-
ologies. Database Syst J. 2014;5(3):37–56. Accessed: Jun. 05,
2024. [Online]. Available from: http://dbjournal.ro/archive/17/17.
pdf#page=38.

[19] Chapin N, Hale JE, Khan KMd, Ramil JF, Tan W. Types of
software evolution and software maintenance. J Softw Maint Evol
Res Pract. Jan. 2001;13(1):3–30. doi: 10.1002/smr.220.

[20] Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia
A. Detecting code smells using machine learning techniques: Are
we there yet?. 2018 IEEE 25th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pp. 612–21.
IEEE, 2018. Accessed: Jun. 05, 2024. [Online]. Available from:
https://ieeexplore.ieee.org/abstract/document/8330266/.

[21] Fontana FA, Lenarduzzi V, Roveda R, Taibi D. Are architectural
smells independent from code smells? An empirical study. J Syst
Softw. 2019;154:139–56.

[22] Gesi J, Liu S, Li J, Ahmed I, Nagappan N, Lo D, et al. Code smells
in machine learning systems. arXiv. Mar. 01, 2022; Accessed: Jun.
05, 2024. [Online]. Available from: http://arxiv.org/abs/2203.00803.

[23] Hall T, Zhang M, Bowes D, Sun Y. Some code smells have a signif-
icant but small effect on faults. ACM Trans Softw Eng Methodol.
Sep. 2014;23(4):1–39. doi: 10.1145/2629648.

[24] Khomh F, Di Penta M, Gueheneuc Y-G. An exploratory study of
the impact of code smells on software change-proneness. 2009 16th
Working Conference on Reverse Engineering, pp. 75–84. IEEE, 2009.
Accessed: Jun. 05, 2024. [Online]. Available from: https://ieeexplore.
ieee.org/abstract/document/5328703/.

[25] Baqais AAB, Alshayeb M. Automatic software refactoring: a sys-
tematic literature review. Softw Qual J. Jun. 2020;28(2):459–502.
doi: 10.1007/s11219-019-09477-y.

[26] Mens T, Tourwé T. A survey of software refactoring. IEEE Trans
Softw Eng. 2004;30(2):126–39.

Vol 4 | Issue 3 | August 2024 21

https://books.google.com/books?hl=en&lr=&id=2H1_DwAAQBAJ&oi=fnd&pg=PT14&dq=Improving+the+Design+of+Existing+Code&ots=NhxxvhkXOX&sig=oQBKIvLpmxsliM-AW4FjV0ODSLc
https://dl.acm.org/doi/abs/10.5555/280487
https://dl.acm.org/doi/abs/10.5555/280487
https://doi.org/10.1504/IJPQM.2020.104547
https://doi.org/10.1007/978-3-030-65854-0_3
https://doi.org/10.1142/9789812389718_0005
https://ieeexplore.ieee.org/abstract/document/65127/
https://ieeexplore.ieee.org/abstract/document/65127/
http://arxiv.org/abs/1709.08439
http://arxiv.org/abs/1709.08439
https://doi.org/10.1007/978-3-030-30126-2_1
https://doi.org/10.5121/ijsea.2014.5603
https://doi.org/10.1145/181610.181623
https://ieeexplore.ieee.org/abstract/document/5608852/
https://ieeexplore.ieee.org/abstract/document/5608852/
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
http://dbjournal.ro/archive/17/17.pdf#page=38
http://dbjournal.ro/archive/17/17.pdf#page=38
https://doi.org/10.1002/smr.220
https://ieeexplore.ieee.org/abstract/document/8330266/
http://arxiv.org/abs/2203.00803
https://doi.org/10.1145/2629648
https://ieeexplore.ieee.org/abstract/document/5328703/
https://ieeexplore.ieee.org/abstract/document/5328703/
https://doi.org/10.1007/s11219-019-09477-y

Investigating the Role of Software Quality Managers and Software Developers in Creating Code Smells Alzahrani

[27] Lacerda G, Petrillo F, Pimenta M, Guéhéneuc YG. Code smells
and refactoring: a tertiary systematic review of challenges and
observations. J Syst Softw. 2020;167:110610.

[28] Pereira Dos Reis J, Brito E Abreu F, De Figueiredo Carneiro G,
Anslow C. Code smells detection and visualization: a systematic
literature review. Arch Comput Methods Eng. Jan. 2022;29(1):47–
94. doi: 10.1007/s11831-021-09566-x.

[29] Lewowski T, Madeyski L. Code smells detection using artificial
intelligence techniques: a business-driven systematic review.
Dev Inf Knowl Manag Bus Appl. 2022;377:285–319. doi:
10.1007/978-3-030-77916-0_12.

[30] Agnihotri M, Chug A. A systematic literature survey of software
metrics, code smells and refactoring techniques. J Inf Process Syst.
2020;16(4):915–34.

[31] Piotrowski P, Madeyski L. Software defect prediction using
bad code smells: a systematic literature review. in Data-
Centric Business and Applications, vol. 40. In Lecture Notes on
Data Engineering and Communications Technologies. vol. 40,
Poniszewska-Marańda A, Kryvinska N, Jarząbek S, Madeyski L,
Eds. Cham: Springer International Publishing, 2020, pp. 77–99.
doi: 10.1007/978-3-030-34706-2_5.

[32] Lewowski T, Madeyski L. How far are we from reproducible
research on code smell detection? A systematic literature review. Inf
Softw Technol. 2022;144:106783.

[33] Zhang H, Cruz L, Van Deursen A. Code smells for machine learn-
ing applications. Proceedings of the 1st International Conference on
AI Engineering: Software Engineering for AI , pp. 217–28, Pittsburgh
Pennsylvania: ACM, May 2022. doi: 10.1145/3522664.3528620.

[34] Van Oort B, Cruz L, Aniche M, Van Deursen A. The prevalence of
code smells in machine learning projects. In 2021 IEEE/ACM 1st
Workshop on AI Engineering-Software Engineering for AI (WAIN).
IEEE, 2021. pp. 1–8. Accessed: Jun. 05, 2024. [Online]. Available
from: https://ieeexplore.ieee.org/abstract/document/9474395/.

[35] Siddiq ML, Majumder SH, Mim MR, Jajodia S, Santos JC. An
empirical study of code smells in transformer-based code genera-
tion techniques. 2022 IEEE 22nd International Working Conference
on Source Code Analysis and Manipulation (SCAM), pp. 71–82.
IEEE, 2022. Accessed: Jun. 05, 2024. [Online]. Available from:
https://ieeexplore.ieee.org/abstract/document/10006873/.

[36] Emden E Van, Moonen L. Java quality assurance by detecting
code smells. Ninth Working Conference on Reverse Engineering,
2002. Proceedings, pp. 97–106. IEEE, 2002. Accessed: Jun. 05,
2024. [Online]. Available from: https://ieeexplore.ieee.org/abstract/
document/1173068/.

[37] Kovačević A, Slivka J, Vidaković D, Grujić K, Luburić N, Prokić
S, et al. Automatic detection of long method and god class code
smells through neural source code embeddings. Expert Syst Appl.
Oct. 2022;204:117607. doi: 10.1016/j.eswa.2022.117607.

[38] Mhawish MY, Gupta M. Predicting code smells and analysis
of predictions: using machine learning techniques and software
metrics. J Comput Sci Technol. Nov. 2020;35(6):1428–45. doi:
10.1007/s11390-020-0323-7.

[39] Lin T, Fu X, Chen F, Li L. A novel approach for code smells
detection based on deep learning. Appl Cryptogr Comput Commun.
2021;386:171–4. doi: 10.1007/978-3-030-80851-8_12.

[40] Dewangan S, Rao RS, Mishra A, Gupta M. A novel approach
for code smell detection: an empirical study. IEEE Access.
2021;9:162869–83.

[41] Sharma T, Efstathiou V, Louridas P, Spinellis D. Code smell detec-
tion by deep direct-learning and transfer-learning. J Syst Softw.
2021;176:110936.

[42] Walker A, Das D, Cerny T. Automated code-smell detection in
microservices through static analysis: aa case study. Appl Sci. 2020
Jan;10(21):21. doi: 10.3390/app10217800.

[43] Pecorelli F, Palomba F, Khomh F, Lucia ADe. Developer-driven
code smell prioritization. Proceedings of the 17th International
Conference on Mining Software Repositories, pp. 220–31, Seoul
Republic of Korea: ACM. Jun. 2020. doi: 10.1145/3379597.3387457

[44] Vidal SA, Marcos C, Díaz-Pace JA. An approach to prioritize code
smells for refactoring. Autom Softw Eng. Sep. 2016;23(3):501–32.
doi: 10.1007/s10515-014-0175-x.

[45] Fontana FA, Zanoni M. Code smell severity classification using
machine learning techniques. Knowl-Based Syst. 2017;128:43–58.

[46] Alfadel M, Aljasser K, Alshayeb M. Empirical study of the rela-
tionship between design patterns and code smells. Plos One. 2020
Apr;15(4):e0231731. doi: 10.1371/journal.pone.0231731.

[47] Muse BA, Rahman MM, Nagy C, Cleve A, Khomh F, Antoniol
G. On the prevalence, impact, and evolution of SQL code smells in
data-intensive systems. Proceedings of the 17th International Confer-
ence on Mining Software Repositories, pp. 327–38, Seoul Republic
of Korea: ACM. Jun. 2020. doi: 10.1145/3379597.3387467.

[48] Han X, Tahir A, Liang P, Counsell S, Luo Y. Understanding
code smell detection via code review: a study of the openstack
community. 2021 IEEE/ACM 29th International Conference on Pro-
gram Comprehension (ICPC), pp. 323–34. IEEE, 2021. Accessed:
Jun. 05, 2024. [Online]. Available from: https://ieeexplore.ieee.org/
abstract/document/9463021/.

[49] Yamashita A, Moonen L. Do code smells reflect important main-
tainability aspects?. 2012 28th IEEE International Conference on
Software Maintenance (ICSM), pp. 306–15. IEEE, 2012. Accessed:
Jun. 05, 2024. [Online]. Available from: https://ieeexplore.ieee.org/
abstract/document/6405287/.

[50] Markus P, Florian D. How to effectively define and measure main-
tainability. Softw Eng J. 2008;6:303–16.

[51] Anda B. Assessing software system maintainability using structural
measures and expert assessments. 2007 IEEE International Confer-
ence on Software Maintenance, pp. 204–13. IEEE, 2007. Accessed:
Jun. 06, 2024. [Online]. Available from: https://ieeexplore.ieee.org/
abstract/document/4362633/.

[52] Yamashita A, Moonen L. Do developers care about code smells?
An exploratory survey. 2013 20th Working Conference on Reverse
Engineering (WCRE), pp. 242–51. IEEE, 2013. Accessed: May 21,
2024. [Online]. Available from: https://ieeexplore.ieee.org/abstract/
document/6671299/.

Vol 4 | Issue 3 | August 2024 22

https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1007/978-3-030-77916-0_12
https://doi.org/10.1007/978-3-030-34706-2_5
https://doi.org/10.1145/3522664.3528620
https://ieeexplore.ieee.org/abstract/document/9474395/
https://ieeexplore.ieee.org/abstract/document/10006873/
https://ieeexplore.ieee.org/abstract/document/1173068/
https://ieeexplore.ieee.org/abstract/document/1173068/
https://doi.org/10.1016/j.eswa.2022.117607
https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1007/978-3-030-80851-8_12
https://doi.org/10.3390/app10217800
https://doi.org/10.1145/3379597.3387457
https://doi.org/10.1007/s10515-014-0175-x
https://doi.org/10.1371/journal.pone.0231731
https://doi.org/10.1145/3379597.3387467
https://ieeexplore.ieee.org/abstract/document/9463021/
https://ieeexplore.ieee.org/abstract/document/9463021/
https://ieeexplore.ieee.org/abstract/document/6405287/
https://ieeexplore.ieee.org/abstract/document/6405287/
https://ieeexplore.ieee.org/abstract/document/4362633/
https://ieeexplore.ieee.org/abstract/document/4362633/
https://ieeexplore.ieee.org/abstract/document/6671299/
https://ieeexplore.ieee.org/abstract/document/6671299/

	Investigating the Role of Software Quality Managers and Software Developers in Creating Code Smells
	1. Introduction
	2. Related Work and Background
	3. Research Questions
	4. Methodology
	5. Results and Discussion
	6. Conclusion
	Appendix
	Conflict of Interest
	References

