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ABSTRACT

This study focuses on the issue of fault detection in WSNs while not
disturbing the flow of data, and it presents a comprehensive and new
approach to dealing with the problem. The first steps in the context of
the developed methodology for application to the data of stock exchanges
include scaling of samples by the method of min-max, transformation of
windows of samples as part of data preparation, as well as preliminary
data cleaning and accurate division of data into sections. These steps
are important for dataset preparation for further analysis. The proposed
method relies on the integration of Autoencoders put alongside Least
Squares Support Vector Machines (LSSVM). An Autoencoder network
was developed, and the size of the hidden nodes was later adjusted to
identify internal parameters in the dataset. It was helpful for the subsequent
reconstructions of the data scene and allowed us to obtain high-level features
required for fault detection. With the help of these extracted features,
the LSSVM model was developed for classifying normal and anomalous
conditions in WSNs; the training outcome exhibited high effectiveness
where anticipated indexes of the training data set were 99.77% and for the
test data set were 99%. The above outcomes support the feasibility and
accuracy of the applied approach in fault recognition. The thesis greatly
helps in the progression of the field by providing a methodical way of
addressing the important problem of fault detection in WSNs and providing
experimental evidence and analysis for the stated problem.
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1. Introduction

Wireless Sensor Networks (WSNs) have attracted inter-
est over the years because of their versatility in areas
that include environmental and health and intelligent city
implementations [1]. They include a group of low-cost
sensor nodes that are connected through wireless links
to relay information to a central station in real time [2].
However, they are faulty because the systems and net-
works they manage are dynamic and resource-constrained
environments most of the time. Hence, security incidents
result from exchange failures with node or software faults;
therefore, there is a need to develop adequate protective
measures to ensure continuous availability and functional-
ity of the system; for this reason, there are several reasons
that make fault detection important in wireless sensor
networks [3], [4]. First, these networks are used in intended

environments where the sensor nodes are vulnerable to fail-
ures due to environmental degradation. Secondly, because
the sensor nodes generally contain low power and com-
putational capability, any performance problem should be
detected as early as possible. Thirdly, it is important to note
that the data collected is largely used in life-determining
decisions, and therefore, it is very important to distinguish
between liberal data and fake news. Last, WSNs may con-
tain many nodes, potentially in the hundreds or thousands,
which will make physical repairs impractical [5].

A method proposed for fault detection is called
the enhanced minimum redundancy maximum relevance
(MRMR), which pays much attention to the relevance
determination for reliable fault detection systems [6],
[7]. Literature studies in IoT and cyber-physical sys-
tems propose machine-learning approaches for developing
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sensor-fault detection systems that enable real-time fault
diagnosis [8]. Another approach of supervised machine
learning comprises decision trees (DTs), which are effective
in real-time fault detections; however, the authors did not
explicate their improvements [9].

In an attempt to overcome the challenge of class imbal-
ance in fault detection the RUS method has been used
together with the Extra-Trees classifier algorithm. This
also improves the performance of classifiers where the use
of a balanced dataset for training is encouraged [10]. How-
ever, the Intelligent Negative Selection Algorithm (INSA)
also relies on negative selection in combination with the
Support Vector Machines (SVM) in the aspect of fault clas-
sification; nevertheless, information about the researchers
themselves is not discussed [11].

The portability aspect of WSNs, compounded with
SDN and realistic AI tools, have been used to enhance fault
detection, and the researchers involved in this study are
unknown [12]. Moreover, the Sailfish Optimized Inception
with Residual Network (SOIR) model has been presented
for fault diagnosis, incorporating advanced optimization
techniques as well as deep learning architectures have been
integrated into it, although the related researchers have
not mentioned it here [13]. This paper aims to identify the
major approaches and development plans for fault detec-
tion, and proves the importance of the different machine
learning methods towards improving the availability of the
system.

WSNs are prone to numerous failures due to their
environment and the constrained resources they pos-
sess within the physical and system realms. Hence it
is significant to construct a dependable and efficient
fault detection system; nonetheless, in the current era
of technological evolution, Machine learning, and Deep
learning–Autoencoders, along with Least Square Support
Vector Machines (LS-SVM), are quite famous techniques
for fault detection. Autoencoders are types of neural net-
works that automate reconstruction and anomalous data
identification, making them efficient for use in WSNs’
complex data nature.

2. Methodology

The interactions between intelligent methods and Least
Squares SVM for the proposed new feature are illus-
trated in (Fig. 1). The data collection involves field data
acquisition, data pre-processing, feature extraction by
autoencoders, and fault classification by LSH-kernel based
SVM. To do so, this chapter section gives an overview of
the main phases of feature selection, and the succeeding
sections provide further descriptions of each of the phases.
The methodologies that go along with various algorithms
and numerous attributes in selecting the parameters for
each phase are also elaborated. The overarching goal is to
bring a clear and detailed description and demonstration
of this novel perspective and reveal the beneficial results
of applying this strategy in the framework of increasing
confidence in WSNs in different fields of utilization.
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Fig. 1. The steps of our proposed method.

2.1. Data Preprocessing

Data preprocessing is one of the most important early
stages when performing fault detection in WSNs using
Autoencoders and LSSVM. This stage ensures that the
data is complete and ready for the subsequent features to
be extracted, as well as for looking for potential faults.
Here’s a detailed overview of the preprocessing steps:
Here’s a detailed overview of the preprocessing steps:

1. Normalization (Min-Max Method)
Normalization of data is done using the Min-Max

method as illustrated in the following (3)–(1), which scales
the features data from the range of [0,1]. This step helps
to normalize the features so that we do not have favored
sensors because of their range.

(
Xnormalized = X − Xmin

Xmax − Xmin

)

2. Reordering Sample Windows
Sample windows are relocated to improve temporal

information contents. This procedure is as follows: increas-
ing the size of a sample data matrix from three times.

3. Data Cleaning
Points to are three (t0, t1, t2) to six (t0, t1, t2, t3, t4,

t5), the temporal patterns that are vital for fault detection
become refined and efficient.

Specifically, data quality encompasses covering the
aspects that lead to data quality and the concept of noise,
outliers, and missing values. It is imperative to pay spe-
cial emphasis on this step to reflect real-world networks’
conditions.
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4. Partitioning
The given dataset is divided into a training dataset and

a testing dataset (most often 80/20). This partitioning
strategy enables the training of the model on most of the
data while evaluating its ability in new and unknown data,
which is very important in real-time fault detection.

The above mentioned preprocessing steps separately
provide a firm base to our fault detection methodology;
thus the subsequent phases, Autoencoders based feature
extraction and LSSVM based fault classification is per-
formed on the clean data.

2.2. Architecture of Proposed Approach

Our proposed method involves fault analysis in WSNs
by using Autoencoders and LSSVM, while data prepro-
cessing forms the initial phase that enables the creation of
a clean dataset.

• Autoencoder is set up to include a hidden layer
with fewer nodes to achieve the abstract features of
WSN data. It encodes the input data and quantizes
them into a latent space representation where the
required information for fault detection can be
learned without supervision.

• LSSVM is then used in classifying features and
differentiating between normal network operations
and faulty ones. This is in light of high performing
parameters enabling the determination of faults
accurately and reliability in numerous applications.

2.2.1. Autoechoer Yields Machine’s Features for it
As one of the core components in our fault detection

system for WSNs, the AE is responsible for the feature
extraction step of the overall system. AE leverages its
unique capabilities to enhance data representation and
facilitate fault detection efficiency: AE leverages its unique
capabilities to enhance data representation and facilitate
fault detection efficiency:

Supervised and unsupervised learning: autoencoder is
very effective in extracting underlying trends and patterns
from the WSN data and makes it possible to identify
efficient features in the detection of faults. This autonomy
to search for information on their own makes them flexible
to handle any type of faults in the network or its conditions.

It’s also worth noting, though, that AE plays a critical
role in dimension reduction by eliminating unneces-
sary data while maintaining the vital data. This feature
improves the effectiveness of faulting detection systems by
making the processing of high-dimensionality WSN data
comparatively simpler. Autoencoder Architecture:

1. Encoder
The encoder, which is positioned tactically to the left

of the AE design, functions as a data compressor as it
compresses the input data into the latent or pre-bottleneck
area. At this point, the important details and desirable
patterns from the input data are extracted. Usually, the
encoder includes several layers of neurons; the goal of
this structure is to downsample while enhancing important
features necessary for further analysis.

2. Decoder
The “Autoencoder” has an encoder and a decoding

part, where the decoding part replicates the compressed
data. The objective is to accurately reconstruct inputs and
outputs to reduce the error when achieving the purpose
of extracting inherent features of wireless sensor network
data. Its Role in Fault Detection: In the case of Autoen-
coder, the main goal is to come up with a summarized
representation of a set of data to improve defect detec-
tion as well as to eliminate noise. As the architecture
of the model, it has a defined number of neurons in
the Bottleneck layer to adjust the data compression. The
extracted features assist in making wireless networks and
the application of reliable information and communication
technology.

3. Classification using LSSVM
In this project, LSSVM is chosen as the foundation

for the development of the fault detection framework in
WSNs. This decision is driven by several distinct advan-
tages that LSSVM offers, particularly well-suited for the
complexities of WSN data:

• Handling High-Dimensional Data: As is common
with WSNs, high-dimensional data is processed
using the LSSVM approach. Its optimization
approach is highly capable of handling big data sets.

• Nonlinear Relationship Recognition: Compared
with the original form of SVMs, LSSVM is capable
of learning nonlinear relationships with WSNs data
contain. This capability is mandatory, especially
given the fact that WSN operations are character-
ized by high dynamism and complexity.

• Noise Robustness: Compared to SVM approach,
LSSVM introduces least squares to make the clas-
sification variant more robust to noise in data and
thus increase the reliability of the fault detection
results.

3. Results and Discussion

3.1. Analysis and Review of Results

In this research, a fault detection method combines
an AE for feature learning and an LSSVM classi-
fier. The action of data cleaning included deleting
of Dump, sw,<|reserved_special_token_261|>,Maj5W„,0„
and Rej55W, whereas data normalization is, where the
number of features is reduced to 39 from 41 because of
constant features. The HoldOut method was applied for
splitting the dataset into the training and test sets in the
proportion of 70:30. The autoencoder with the layer of 20
neurons used unsupervised training for epochs of 500 and
with L2 regularization of 0.05. Stochastic gradient descent
training was used and the specific optimizer employed
was the scaled conjugate gradient descent. In the training
convergence and sample regeneration by the autoencoder,
the convergence is depicted in (Figs. 2–4) which show the
regeneration. Therefore, this methodological framework
seeks to improve fault detection reliability within WSNs
through the use of advanced feature extraction and reliable
classification algorithms.

Then, using the characteristics that the autoencoder
collected, an LSSVM is created to categorize faults. The
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Fig. 2. The structure of the designed autoencoder.

Fig. 3. The training process of the designed autoencoder.

LSSVM classifier’s parameters need to be adjusted cor-
rectly in order to classify the chosen features appropriately.
The categorization parameters are then listed in (Table I).
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Fig. 4. Reconstruction performance of the trained autoencoder
using four different samples.

TABLE I: The Hyperparameters of LSSVM

Parameter Value

Kernel type RBF kernel
Gamma 83.249

The first kernel parameter 4.2849
The second kernel parameter 0.7580

The LS-SVM classifier was trained to detect issues in
the wireless sensor network once the hyperparameters
were established. The performance of the trained model is
thoroughly evaluated using a variety of evaluation criteria
and visualization approaches in the sections that follow
in this chapter. These analyses, which include measures
like accuracy, precision, recall, F1 score, and ROC curves,
provide insightful information on the effectiveness of the
unique fault detection technique.

3.2. Examining the Results of the Test and Training
Dataset Based on the Confusion Matrix

A crucial tool for assessing the effectiveness of our
suggested problem-detection technique without resorting
to additional criteria, such as accuracy, is the confusion
matrix. The primary output of the classification results
produced by the Autoencoder-LSSVM model is a con-
fusion matrix, which is a tabular form. It divides the
forecasts produced by our model into four main groups:
It divides the forecasts produced by our model into four
main groups:

1. True Positives (TP): These kinds of occurrences,
in which our model accurately identifies errors in
the WP data, are instances of good recognition that
we can share with our clients. In our scenario, the
pattern has been triggered by the model for real fault
occurrence, which is known as true positive.

2. Real Negatives (TN): When our model performs
well in identifying real positive network behavior,
it suggests that the model is functioning correctly.
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In other words, it avoids assigning blame that isn’t
actually there.

3. False Positives (FP): This occurs when the model
misinterprets an anomaly (another fault) as a healthy
sign (a fault). Therefore, a false positive suggests
that the network could be functioning well or that
peaking and flow changes are making it falsely wor-
risome.

4. False Negatives (FN): These instances indicate that
our model is unable to detect irregularities in the
system; as a result, just a specific component is
subjected to deterministic examination. The model’s
performance on both an overall and class-wise level
is clearly illustrated by the visualization of the overall
confusion matrix (Fig. 5) and the class-wise con-
fusion matrices for the training and test datasets
(Fig. 6).

The combination of TP, FP, and FN shows how well
the model detects defects and how likely it is to overclassify
them as such. Additionally, the model’s capacity to identify
all real anomalies is demonstrated by the fact that the TN
should always equal 1. We may score the defect detection
model without actually seeing specific performance data
to evaluate the overall performance in our thesis setting
by evaluating these matrices, which give us insight into the
model’s strengths and flaws.

Fig. 5. Fault detection in WSN confusion matrix.

Fig. 6. Fault detection in WSN confusion matrix for training dataset.

3.3. Evaluation Metrics
In evaluating our Fault Detection Methodology using

the Autoencoder-LSSVM approach, several key met-
rics from the confusion matrix guide our assessment:In
evaluating our Fault Detection Methodology using the
Autoencoder-LSSVM approach, several key metrics from
the confusion matrix guide our assessment:

1. Accuracy: Measures the overall ability of this model
to predict accurately, and is given by the formula:
((TP + TN)/(TP + FP + TN + FN)) It shows
the percentage of accurately classified normal and
abnormal behavior in the WSN data.

2. Precision: Concentrates on the efficiency of the pos-
itive forecasts and is measured with TP/(TP + FP).
Precision tells how many of the instances that were
classified as an anomaly by the model are actually
genuine anomalies, therefore guaranteeing efficient
accuracy in identifying such cases.

3. Recall (Sensitivity): Measures the model’s perfor-
mance in pinpointing all true anamolies, set as TP:
(TP + FN). Concerning the model, it highlights how
it is capable of capturing all true fault occasions.

4. F1-Score: Gives the measure of accuracy in
the form of the harmonic mean of precision
and recall WHERE Accuracy = 2 (Precision ∗
Recall)/(Precision + Recall). It reports both false
positives that the model produces and the events that
the model fails to detect as anomalies.

These metrics combine to give a direction on how effec-
tive the Autoencoder-LSSVM model is in diagnosing faults
in the WSN, and at the same time; measures are put in
place to avoid frequent false alarms while at the same time
ensuring that actual faults are detected.

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1Score = 2 × (Precision × Recall)
Precision + Recall

(4)

3.4. Examining the Results of the Test and Training
Dataset Based on the Introduced Evaluation Criteria
In this section, we proceed with evaluating the efficacy

of our proposed methodology, utilizing the performance
metrics we previously discussed. We visually represent
these metrics in (Fig. 7), providing clear graphical insights
into the computed values for precision, accuracy, recall,
and the F1 score. Noteworthy is the impressive accuracy
achieved in both datasets: 99.93% for the training dataset
and 99.25% for the test dataset. These results underscore
the remarkable capability of our approach. One more thing
is they the model performs well in both the training and
the test datasets by achieving the same accuracy levels can
indicate the model’s ability to capture an inherent data
pattern and generalize a new data points, which is a basic
step in fault detection in the WSNs.
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Fig. 7. Fault detection in WSN performance chart for the
training dataset.

3.5. Examining the Results of the Test and Training Set
Based on the Receiver Operating Characteristic Curve

The ROC curve is a very helpful indicator that shows
classifier effectiveness in relation to various scenarios
where the model should be able to differentiate between
typical network traffic and unusual activity. Plotting sen-
sitivity and specificity on its axis at different classification
thresholds allows the ROC curve to visually represent the
relationship between the two. The instance that shows how
successfully the fault detection model we are suggesting
separates real fault occurrences from false alarms within
the WSN data is called the ROC curve.ROC curve indicates
us which model is performing better than the other by
saying it is positioned in the upper left corner.

This shows that the false positive rate is at its lowest
outside of the model’s ability to get a good true positive
rate. The performance of our methodology is illustrated
graphically in (Fig. 8) which pertains to the training and
test datasets, respectively. This effectively illustrates how
our method distinguishes between abnormal and typical
actions, and it also suggests that the model may provide
unmatched defect detection.

3.6. Comparison of the Proposed Method with Previous
Studies

In this work, we have put together a comparative
analysis of fault detection techniques for WSNs with ref-
erences to the autoencoder- LSSVM approach that we
recommended and its comparison to other methods. The
specificity of the developed method, increasing its robust-
ness, flexibility, and accuracy in fault identification, makes
it a large step forward in tackling WSN issues.

In the IoT age, data collected from sensors are valuable
for input in decision-making processes; however, environ-
ments in which operations take place introduce difficulties
and enhance the likelihood of sensor faults. Zidi et al.
[14] present a novel methodology based on digital twins
and GANs as well as GAF encoding with the accuracy of
fault detection at 98% and 7%. Since WSNs are established
in unstable environments, sensors are exposed to different
risks, and hence, effective fault detection techniques must

Fig. 8. Fault detection in WSN ROC curve for training datasets.

TABLE II: Comparison of Our Proposed Approach with Previous
Studies

Reference Method Accuracy

[14] Generative Adversarial
Network (GAN) with

Gramian Angular Field
(GAF)

98.7%

[15] Multi-layer perceptron
classifier

92%

[16] Random Under Sampling
(RUS) and the Extra-Tree

(ET) algorithm

96%

Our proposed approach LSSVM and autoencoder

be employed. The machine learning classifiers discussed in
Suthaharan et al. [15] are instrumental in classifying the
data into faulty and non-faulty data categories to tackle
the different faults’ different scenarios with optimum
accuracy.

In Hasan et al. [16], applying supervised learning with
RUS and ET classification to screenshot sensors, the
authors notice that GPU Memory anomalies are evident,
and the performance of the proposed method is compa-
rable to SVM and RF algorithms at the same indicators.
The summary comparison is provided in (Table II), based
on which it could be observed that the present study made
several improvements in the methodology of WSN fault
detection.

4. Conclusion

This work focuses on fault detection of Wireless Sensor
Networks (WSNs) by extending the ability to detect faults
in a better way. The methodology includes three main pre-
processing steps: feature normalization, where the range is
minimized and maximized; sample clustering in windows;
and data cleansing.

Autoencoders are integrated with Least Square Support
Vector Machines (LSSVM) in the proposed strategy. The
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Autoencoder learns the main features of data and produces
feature maps necessary to detect defects; the LSSVM iden-
tifies normal and different behaviors.

The performance estimates prove its high effectiveness;
the accuracy rates are equal to 0.9977 on the training set
and 0.9925 on the test set. This affirms the effectiveness of
identifying fault nodes of the method. However, through
Autoencoders and LSSVM integration, the approach also
enables early fault detection and more performance of
WSN applications. Specifically testing the bot-iot dataset,
the model had a 98% precision in classifying the attack and
legal transmission, which made it useful precisely.
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