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Bayesian Meta-Analysis to Validate Correlate of
Protection for High Vaccine Efficacy Clinical Trials

Igwebuike Enweonye and Edith Uzoma Umeh

Abstract—In clinical trials, a correlate (surrogate) of protection
(CoP) endpoint must be properly validated through rigorous
sound methods before it may be approved for use. The validation
of surrogate in the context of high vaccine efficacy trials, however,
poses great challenge due to sparse data; and conventional meth-
ods for statistical validation of surrogate are no longer adequate.
Although idea of surrogacy was developed in the context of
a single trial, the meta-analytic approach, which allows both
individual and trial level surrogacy, has become well accepted.
However, the meta-analytic joint bivariate full models suffer
computational issues. To ease the challenge, aggregate data may
be used but it leads to loss of information. In this manuscript the
direct application of individual level (instead of aggregate) data
in a Bayesian Hierarchical Modelling framework was proposed.
The proposed method uses reduced bivariate models with trial
specific random effects of treatment on the endpoints and no
correlated residuals. Simulated data consist several scenarios,
each of which has 5000 participants data, 50 subgroups (used
as trials) characterised by size of 100 participants per trial
randomised in the ratio 1:1 to vaccinated and unvaccinated
treatment groups. The meta-analysis showed improved quality of
the CoP compared to literature based on aggregate data. There
were no computational issues with the proposed hierarchical
model.

Index Terms—Validation, Surrogate,
Bayesian, Hierarchical Modelling.

clinical endpoint,

I. INTRODUCTION

To evaluate a vaccine’s efficacy, it is generally useful to
identify the level of an immune marker above which vac-
cinees have a defined probability of being protected. It is
called the protective threshold, and is used to calculate the
protective response rate [1]. During clinical development, if
such a protective threshold (otherwise known as correlate of
protection) is known, one can then define a level (a titer, a
concentration or a fold change) above which the vaccinated
subject has responded to the vaccine, that is, the vaccine
response threshold, and it’s used to calculate the response rate
[1]. However, during clinical development, vaccine correlate
of protection is generally unknown [2]. A number of disease
areas suffer unmet medical needs; warranting that treatments
are approved quickly for the patients and health care providers.
Vaccines are mostly given as prophylactics - of which the
true clinical endpoint is difficult to measure and clinical
development relies largely on immunogenicity endpoints.
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When clinical endpoints of primary interest are hard to
measure, or unethical, surrogate endpoints may be used in lieu
[3]. Surrogate endpoints are useful when they can be measured
earlier, more conveniently, or more frequently than the true
endpoints [4]. The use of surrogate endpoints in clinical trials
is increasing, necessitating the development of sound statistical
methods in the validation process [5]. Before a surrogate
endpoint can be accepted in place of a true clinical outcome, it
must demonstrate sufficient evidence, including evidence from
epidemiological studies and clinical trials. Between 2010 and
2012, the United States Food and Drug Administration (US
FDA) approved 45 percent of new drugs applications based
on various surrogate endpoints. If a surrogate endpoint clearly
predicts a beneficial effect through appropriate studies, its use
generally allows for more efficient drug development programs
[6].

[7] formalized a definition of surrogate endpoints, and
outlined how they could be validated, and discussed intrinsic
limitations in the surrogate marker validation quest, in the case
of a single trial and single surrogate endpoint. His landmark
paper became the beginning of the statistical validation of
surrogate endpoints. Prentice suggests that surrogate endpoint
S should capture any relationship between the treatment Z
and the true endpoint T. That is, a test of Hy of no effect
of treatment on surrogate is equivalent to a test of Hy of no
effect of treatment on true endpoint [7]. The approach was
criticized as too stringent and not straightforward to verify,
leading to other proposals [8] [9] and [10]. But now the meta-
analysis which allows both individual and trial level surrogacy
has become a well accepted method of validation.

A. Meta-analytic Approach

Meta-analysis provides an elegant solution for combining
information across related studies to evaluate treatment ef-
ficacy. The evaluation of a surrogate endpoint within the
meta-analytic setting has been discussed, among others, by
[2] [8] [11] [12] and [13]. A first formal Bayesian approach
was given by [11] for a case where individual data are not
available. [8] extended these ideas using the theory of linear
mixed-effects models. In the first stage of their model, they
introduced full-fixed effects, and random effects in the second
stage. [12] extended it further using generalized estimating
equations (GEE) methodology. The authors applied meta-
analysis with normally distributed endpoints and proposed a
two-stage model for the evaluation of the potential surrogate
[13].

A hierarchical framework for assessing immunological
correlates of protection in vaccine trials was proposed by
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[14], while [15] provided the relationship between the
causal-inference and meta-analytic approach. [13] investigated
Bayesian evaluation of surrogate endpoints using individual
level data with normally distributed true and surrogate end-
points. [16] discussed meta-analytic validation with binary
outcomes. They adopted a latent variable approach, with the
assumption that the observed binary variables result from
dichotomizing an unobserved continuous variable based on
certain threshold.

Among the authors, only [2] offered a statistical solution
for assessing correlates of protection in vaccine trials. They in-
vestigated a true Bernoulli distributed endpoint and a normally
distributed surrogate endpoint with aggregated data. Also, they
performed separate linear regression of regression of surrogate
on treatment and then true endpoint on treatment for each of
the subgroups (trials) and then did a weighted linear regression
of the slope of the true endpoint on the slope of the surrogate.

II. MATERIALS AND METHODS

Data sets which include both true clinical and surrogate
outcomes were simulated. Each scenario has a size of 5000
participants consisting 50 subgroups (used as trials) charac-
terised by a size of 100 participants per trial randomised
in the ratio 1:1 to vaccinated and unvaccinated treatment
groups. Bayesian hierarchical model using Markov Chain
Monte Carlo (MCMC) method was applied to each simulated
scenario. The model combined non-informative prior (NIP)
distributions with simulated data as likelihood to obtain the
posterior information for inference. Each MCMC simulation
has 3 parallel chains, adapting every 1000 steps, 1000 draws
were discarded as burn-in samples, and another 10000 draws
were used for inference. Standard inference calls R to run
the model through JAGS and extract predicted values for
the monitored parameters, covariance matrix between random
treatment effects of the endpoints, D, and coefficient of
determination, R2.

Let S;; and T;; represent the continuous and binary underly-
ing values of the surrogate and the true endpoints, respectively,
for subject j in trial ¢ and Z;; an indicator for treatment
effect. The meta-analytic framework in the single trial setting
is considered, in which the units are randomized subgroups of
centers. At the first level of the hierarchical bayesian meta-
analytic approach we specify a bivariate model as follows:

Sij = ps +ms; + (@ +a;)Zij + €gij (D

logit(Ty; = 1) = pr +mp; + (B + b;) Z;; (2)
where pgs and pr are fixed intercepts, mg; and mp; are
trial specific random intercepts, o and [ are fixed effects of
treatment Z on the endpoints in trial ¢, a; and b; are the trial
specific random effects of treatment on the endpoints. That a
subject j in trial ¢ has the disease is depicted with T}; = 1.
The error structure eg;; are surrogate associated normally
distributed random error terms with mean zero and variance

oi o+ The random effects (mg;, mri, a;, b;) are assumed to

be mean-zero normally distributed with covariance matrix
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The surrogate endpoint validation is captured by means of
the quantity, the trial-level R2. Provided (3) is positive definite,
then it follows that,

dsb
dab

dss dsa
dSa daa

)

2 2
R trial = R bilmgi,a; —
dpp

(i) (i i)
dab
4)
The above generalised model is reduced by kicking out the
trial-specific intercept and the error term in (1) and the trial-
specific intercept in (2), assuming full mediation, leading to,

Sij :#S+(a+ai)Zij+ss¢j (5)
logit(Tij = 1) = pr + (B +b:) Zi; (6)
where,
s g + O¢1~Zij
~N 7
( UTL ) K Bo + B1.Zi; )’Z} @

Ws is mean surrogate, pryz is mean logit T and ) is the
variance-covariance matrix between the quantities pg and
HTL-

And,
a; 0 _ daa dab
(5 )~m((o) =] 2=(im i) o
The R? for the reduced models becomes,
d2
R jiairy = RPpyja, = 72 9
trial(r) bila; doodyy 9

The true clinical endpoint is assumed to follow Bernoulli
distribution with parameters n being the number of subjects
and pr the probability of being protected by vaccination. The
fixed treatment effects a, a1, By and (31, corresponding to the
CoP and the vaccination status are normally distributed with
mean 0 and variances 72, 721, T4, and 73, respectively.

At the second level of the hierarchical model, the priors for
the fixed effects are specified. For NIP models the following
hyper-priors are specified:
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01 ~ Bern[pr],
Qo ~ N(O (30)7

(051 NN(O 1)7
Bo ~ ( 7 0)7
Bl ( 1)a

02 ~ U(0,100), (10)

n
70 ~ Gamma(107*,107%),
(1074,107%),
(1074,107%)
Tgl ~ Gamma(107*,107%),

.2 ~ Gamma

Tﬁo ~ Gamma ,

Next, a prior distribution for the association between the
treatment effects of the two endpoints and the random effects
are specified. As the hyper-prior distribution for the variance-
covariance matrices Eqn. 7 and 8, a Wishart distribution is

assumed:
D™' ~ Whishart(Rp)

—1
>~ Whishart(Ry)

The trial-level surrogacy is assessed using the posterior means
for the coefficients of determination. A good surrogate can
be adopted when R? is sufficiently large. However, statistics
is just one aspect of the many judgments that are considered
before a final adoption of a surrogate. Other considerations
may include, but not limited to clinical and epidemiological
judgments as deemed fit by the experts.

(1)

A. Software

Markov chain simulation is based on drawing values of
0 from approximate distributions and then correcting those
draws to better approximate the target posterior distribution,
p(0)y) [17], [18]. The sampling is sequential, with the distri-
bution of sampled draws depending on the last value drawn;
hence, the draws for a Markov chain. In the context of
probability theory, a Markov chain is an integer-time process,
{X,, > 0}, for which the sample values for each random
variable X,,, n > 1, lie in a countable set S and depends on
the past only through the most recent random variable X,, 1,
[19]. For all positive integers n, and for all choices of 7, j, k..., [
in S,

PriX,=j|Xn-1=6,Xn2=k,..Xo=1}= (12)
Pri{X, =j|Xn-1 =1}
for all conditioning events X,,_1 = 4, X2 = k,.... Xg =1

of positive probability [19].

Gibbs Sampling is MCMC methods which involves succes-
sive sampling from the complete conditional densities. Sam-
ples may be drawn from standard densities or non-standard
densities [20]. If the full conditionals are non-standard but
of a certain mathematical form, then adaptive rejection sam-
pling [21] may be used within the Gibbs sampling for those
parameters. In other cases, alternative schemes based on the
Metropolis-Hastings algorithm, may be used to sample from
non-standard densities [22]. [20] [17] and [18] discussed the

working of MCMC algorithms. Modeling was performed using
Just Another Gibbs Sampler in R (RJAGS) as an interface to
JAGS (JAGS 4.3.0 release July 18 2017). In JAGS there is
no flexibility of specifying any one sampling method rather it
runs as a black box and chooses the most efficient sampling
method among those available.

III. DATA SIMULATION, MODELLING AND RESULTS
A. Simulation of Data

Data was simulated with a true binary outcome and a
continuous surrogate, using the reduced models in Eq.(5) and
(6) without random intercepts. Each scenario has sample size
N=5000 and consists of 50 trials and 100 subjects per trial
with a 1:1 randomisation to either vaccinated and unvaccinated
groups. Our Simulation recreated the same data used in Cal-
legaro & Tibaldi (2019) with these parameters: pugs = 4.609;
pr = (—2.0, —=3.5, —4.0 ,4.5, —=5.0, —5.6, —7); a = 5.458;
B =(—1.43, —1.45, —1.7591, —3); Var(a;) = 10; Var(b;) =
4. The correlation between the treatment random effects is
p = Cor(a;,b;) = V0.9, with R2 =09 .

A total of 70 scenarios in R with a range of vaccine efficacy
(VE =0.75, 0.82, 0.95, 0.96, 0.97, 0.98 and 1) were simulated.
Vaccine efficacy is expressed as:

B P(T=1Z=1)
VE= (1 P(T =1|Z =0)

where P(T = 1|Z = 1) and P(T = 1|Z = 0) are the the
probabilities of disease among vaccinated and unvaccinated
individuals, respectively.

The small subgroups were used as units for the meta-
analysis. For VE=95% the simple statistics of the simulated
data are shown in Table I and Table II. Table I presents the
distribution of participants by trial and treatment group. The
summary statistics of the simulated continuous surrogate end-
point is displayed in Table II. And the distribution of diseased
participants by trial and treatment group is presented in Table
III.

Table I shows the size of all the 50 trials used as subunits in
the meta-analysis (VE=95%). A total of 5,000 individual data
were generated. Each of the 50 different trials has a size of
n=100 with 50 subjects on either vaccinated or unvaccinated
groups.

Table II shows the summary statistics of the simulated
continuous surrogate endpoint for the 50 trials used as subunits
in the meta-analysis (VE=95%). The mean for each trial sur-
rogate, standard deviation as well as minimum and maximum
surrogate values are displayed.

From Tables III and IV, n; = 73 and ny = 1540 vaccinated
and unvaccinated subjects who also got the disease. It gives a
total of 1613 diseased subjects in both treatment groups. Using
Eq. (13), it can be shown that VE=95% for these data.

) 100% (13)
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TABLE I

SURROGATE ENDPOINT

SUMMARY STATISTICS OF THE SIMULATED CONTINUOUS

22

TABLE I

DISTRIBUTION OF PARTICIPANTS BY TRIAL AND TREATMENT GROUP
Trial Treatment

Unvaccinated Vaccinated Total
1 50 50 100
2 50 50 100
3 50 50 100
4 50 50 100
5 50 50 100
6 50 50 100
7 50 50 100
8 50 50 100
9 50 50 100
10 50 50 100
11 50 50 100
12 50 50 100
13 50 50 100
14 50 50 100
15 50 50 100
16 50 50 100
17 50 50 100
18 50 50 100
19 50 50 100
20 50 50 100
21 50 50 100
22 50 50 100
23 50 50 100
24 50 50 100
25 50 50 100
26 50 50 100
27 50 50 100
28 50 50 100
29 50 50 100
30 50 50 100
31 50 50 100
32 50 50 100
33 50 50 100
34 50 50 100
35 50 50 100
36 50 50 100
37 50 50 100
38 50 50 100
39 50 50 100
40 50 50 100
41 50 50 100
42 50 50 100
43 50 50 100
44 50 50 100
45 50 50 100
46 50 50 100
47 50 50 100
48 50 50 100
49 50 50 100
50 50 50 100
Total 2500 2500 5000

Trial N Mean Std Dev Minimum Maximum
I 100 5581438 6.1651858 BITI572 22.885934
2 100 4.837318 7.8500809 -15.144460 24.032939
3 100 4267704 6.9706549 -10.524979 17.334508
4 100 4904133 10.616876 -16.456664 24207671
5 100 5277160 13.702893 21.938412 30.055330
6 100 5.035137 57989486 9.398212 17.210702
7 100 4050326 56114143 -10.972088 15.879384
8 100 4.858999 8.1021170 -11.305976 22.873098
9 100 4466606 8.9696209 -12.676011 22772712
10 100 4.182363 7.1674432 -18.756919 19.798907
1 100 3.501445 91579968 -16.062646 21.133237
12 100 4.164714 7.6470250 -13.184587 20527125
13 100 4.609674 7.5609869 9.475160 22.699017
14 100 4745974 9.9425728 -18.114636 27.753646
15 100 4.880797 6.1425425 -12.334095 14.804802
16 100 4384276 7.1194461 -11.213029 19.169553
17 100 5.180079 6.1556448 -8.981596 20.045202
18 100 4.904610 11.046530 -17.752468 30.708110
19 100 5.553957 8.6872886 -13.770109 32.432280
20 100 4.190875 52559122 -8.506581 13363654
21 100 4771295 7.7088417 -16.978198 22759771
2 100 4070592 5.8188742 -13.195764 17.282023
23 100 5.095078 6.9626785 -18.721462 23.932188
24 100 3765213 5.5350100 -9.847606 18.733710
25 100 4964316 6.7875249 -13.862187 25.635083
2 100 4913065 5.9643540 -14.698751 21.459851
27 100 4619510 5.6488913 -8.483222 15.407704
28 100 3734606 7.8461926 -15.301765 20.093127
29 100 4436181 6.2002855 -10.716768 24.624555
30 100 4053188 12493655 23.087152 28.316030
31 100 4395517 5.6881188 -8.688193 20.487168
32 100 4119432 6.2146165 -13.838350 18221781
33 100 4701447 8.7476955 -14.662209 22.561478
34 100 4683116 6.5561742 -9.382967 25.893110
35 100 4527117 7.4434411 -12.651727 20.697940
36 100 4069786 57621704 -8.866993 15.964277
37 100 3.734505 92712482 -17.766321 27.337677
38 100 5.027859 52845974 -7.032070 16.449617
39 100 4.876242 8.9533238 -12.741366 22.629380
40 100 4367727 57649069 9.865854 17.288580
41 100 3.950626 83180258 -13.645328 19.983897
4 100 4827151 12277922 -18.825413 26.358662
43 100 4315786 85729784 -15.243096 20.136459
44 100 4790851 7.0193751 -13.537639 20.207349
45 100 4543627 85230425 -14.644288 20.885733
46 100 4.870899 85394262 -14.255570 20.150958
47 100 4749415 7.1898926 -14.807515 23.182370
48 100 5.121407 83375612 -11.139927 20.640268
49 100 4533490 6.0677157 -18.546704 24.117296
50 100 5.409503 8.9605473 -19.800214 24.616188
TABLE III
DISTRIBUTION OF DISEASED PARTICIPANTS BY TRIAL AND TREATMENT
GROUP
Trial Treatment
Unvaccinated Vaccinated Total

1 36 0 36

2 13 0 13

3 34 0 34

4 8 4 12

5 0 20 20

6 47 0 47

7 49 0 49

8 9 3 12

9 27 2 29

10 31 0 31

11 11 1 12

12 34 1 35

13 33 0 33

14 17 0 17

15 43 0 43

16 42 0 42

17 40 0 40

18 23 0 23

19 12 2 14

20 46 0 46

21 30 1 31

22 48 0 48

23 42 0 42

24 50 0 50

25 46 1 47
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TABLE IV
DISTRIBUTION OF DISEASED PARTICIPANTS BY TRIAL AND TREATMENT
GROUP
Trial Treatment
Unvaccinated Vaccinated Total
26 35 0 35
27 47 0 47
28 24 1 25
29 32 0 32
30 1 21 22
31 42 0 42
32 46 0 46
33 36 1 37
34 34 0 34
35 18 0 18
36 49 0 49
37 7 1 8
38 50 0 50
39 25 2 27
40 47 0 47
41 36 1 37
42 7 5 12
43 31 0 31
44 39 1 40
45 22 0 22
46 31 3 34
47 38 0 38
48 14 1 15
49 48 0 48
50 10 1 11
Total 1540 73 1613

B. Modelling

We specified the reduced models in (5) and (6) without
random intercepts as well as the noninformative priors. The
simulated data were loaded and prior values specified for
MCMC. 1000 samples were used for burn in while 10,000
iterations for inference. The sampler adapts its behaviour to
maximize their efficiency after every 1000 iterations. The
Trace plots, Figures (1) and (2) reveal the stability and proper
mixing of the parameters R? and variance-covariance matrix
across the 3 parallel chains.

C. Results

The coefficient of determination R? estimated by Bayesian
model as a function of VE are presented in Table V. For
an empirical comparison the data for VE=75%, 82% and
95% are compared with logistic, Firths and WIP models [19].
Those methods were based on two-stage approach. The results
show that the Bayesian model outperform R? all models with
the smallest standard deviations. The comparison shows very
strong correlation, R? value (0.99), between a; and b;, the
trial specific random effects of treatment on the surrogate and
the true outcome respectively for the Bayesian model. The
correlation between treatment effect on the true outcome (Bl)
and the treatment effect on the surrogate (d;) are observed
with an estimated R? of (0.24, 0.51 and 0.54) for logistic,
Firth and Gelman’s WIP models [19], all performing less than

the Bayesian model, value =0.99 for vaccine efficacy of 95%.
The trend is similar for all vaccine efficacies and the Bayesian
R? show near perfect surrogacy and less biased.
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Fig. 1. Trace plots (NIP) model: Dmat[1,1], Dmat[2,1], Dmat[1,2]
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Fig. 2. Trace plots (NIP) model: Dmat[2,2], r.tr (R?)

TABLE V
ESTIMATED R? (MEAN, MEDIAN, STANDARD ERROR, 95% CONFIDENCE
INTERVALS AND MSE) FOR DIFFERENT MODELS AND VALUES OF VES

Model VE Mean (R?) Me;lian Std (R?) 95% LL 95% UL MSE (R?)
(R?)
WIP 0.75 0.71 0.72 0.09 051 0.85 0.05
Firth 0.75 0.72 0.73 0.09 0.54 0.86 0.04
Logistic 0.75 0.59 0.61 0.16 0.24 0.84 0.12
Bayesian 0.75 0.90 0.90 0.04 0.90 0.90 0.00
WIP 0.82 0.71 0.72 0.10 0.48 0.87 0.05
Firth 0.82 0.73 0.75 0.09 0.52 0.87 0.04
Logistic 0.82 0.52 0.54 0.22 0.03 0.85 0.19
Bayesian 0.82 0.89 0.89 0.04 0.89 0.89 0.00
WIP 0.95 0.70 0.71 0.11 0.45 0.87 0.05
Firth 0.95 0.72 0.74 0.10 0.48 0.88 0.04
Logistic 0.95 0.46 0.49 0.26 0.01 0.86 0.26
Bayesian 0.95 0.81 0.85 0.14 0.81 0.81 0.00

Table V and Figure (3) show an empirical comparison of
the hierarchical bayesian approach for VE= 95% with previous
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models [2] whose methods were based on two-stage approach.
The results show that the Bayesian model outperforms all other
models with the least mean square error (MSE) < 0.0001. The
comparison shows very strong correlation, R? value (0.99),
between a; and b;, the trial specific random effects of treatment
on the surrogate and the true outcome respectively for the
Bayesian model. The correlation between treatment effect on
the true outcome ( BZ) and the treatment effect on the surrogate
(d;) are observed with an estimated R? = 0.24, 0.51 and 0.54
for logistic, Firth and Gelman’s WIP models respectively [2].
For the Bayesian model R? = 0.99. The trend is similar for
all other vaccine efficacy results showing the Bayesian model
performing better and with least MSE.

A) Bayesian (NIP)

B) Binary outcome (logistic)

B

-30 20 10 00

Fig. 3. Bayesian approach compared to Callegaro & Tibaldi (2019). Panels:
(a) Bayesian model using Non Informative Prior (NIP); (b) original data results
(logistic results on the dichotomised outcome); (c) Firth logistic results on the
dichotomised outcome; (d) Weakly Informative Prior (WIP) logistic results on
the dichotomised outcome

IV. DISCUSSIONS

Clinical trials are very expensive and can be lengthy yet
the problem of getting treatments to the patient population
that need them persists. This is putting pressure on the
Pharmaceutical companies who are continuously searching
for smarter ways of delivering treatments quicker. One way
of achieving an accelerated clinical intervention would be
through the use a substitute endpoint that is easier, faster and
less expensive to measure in lieu of the clinical endpoint. An
intermediate clinical endpoint is called surrogate (correlate)
of protection (CoP) in the context of vaccine. The current
situation with COVID-19 global epidemic and lock-down is
a typical scenario where the use surrogate endpoint would be
beneficial. And health authorities are becoming more open to
possibilities to discuss innovations that can support accelerated
approvals of treatments. For example, between 2010 and 2012,
the US Food and Drug Administration (FDA) approved 45
percent of new drugs based on a surrogate endpoint [6].

Before a surrogate endpoint can be accepted in place of a
clinical outcome, we need sufficient evidence, including evi-
dence from epidemiological studies and clinical trials. Usually

clinical trials are needed to show that the surrogate endpoint
can be relied upon to predict, or correlate with, clinical benefit
in a context of use [6], [8]. Surrogate endpoints that have
undergone extensive testing are called validated surrogate
endpoints. Any other short of that will not be accepted by
healthy authorities. Validation of surrogate is an exercise with
a completed study; and whether the results can be extrapolated
to a new study, and to what extent, is always a decision for
the clinical team.

A substitute clinical endpoint must be properly validated
through rigorous sound methods. The Prentice methods and
the meta-analytic are the drivers for statistical validation of
surrogate endpoints. High vaccine efficacy trials, however,
pose great challenge due to sparse data and conventional
methods for statistical validation of surrogate are no longer
adequate. Statistical methods tailored towards validating sub-
stitute clinical endpoints in high vaccine efficacy trials are not
well developed in literature. The Prentice method is suited for
validation of single trial and has given way to meta-analysis.
And the meta-analytic framework which allows surrogate
validation in multiple trials face many computational issues
[10]. This report extended the simulation study of [2], through
direct application of individual trial data in a meta-analytic
framework using Bayesian Hierarchical Modelling paradigm.
We applied reduced bivariate model with trial specific random
effects of treatment on the endpoints with no correlated
residuals.

As clinical data is not readily available, 70 data scenarios
with a range of vaccine efficacy (VE = 75% to 100%) were
simulated. Each scenario has a size of 5000 participants, ran-
domization in a ratio 1:1 to either vaccinated or unvaccinated
groups to 50 trials (n=100), for each trial. It was followed
by the application of Bayesian hierarchical models using
Markov Chain Monte Carlo (MCMC) simulation with non-
informative prior (NIP) distributions. For each MCMC model
in RJAGS, 3 parallel chains were requested, and adapting the
simulation every 1000 steps, 1000 draws were discarded as
burn-in samples, and 10000 draws were used for inference.

V. CONCLUSIONS

A reduced bivariate model with trial specific random effects
of treatment on the endpoints with no correlated residuals
was applied. The results indicate that the Bayesian model out-
performs the other comparators, logistic, Firth and Gelman’s
WIP models [2] at every vaccine efficacy. The Bayesian model
consistently produced near perfect surrogate R? with the least
mean square error (MSE). And there are no convergence issues
if the model is simplified without correlated residuals.
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