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I. INTRODUCTION 
There has been exponential growth in applications of 

speech command-based systems over the last decade. Isolated 
speech command recognition becomes an esteemed domain 
of research as a result of being a substantial part of robotics, 
automation, and the internet of things (IoT). Most of these 
systems are based on acoustic voice signals. However, 
acoustic speech is unavailable for some speech-impaired 
people. For this reason, command recognition using throat 
speech is highly demanding, but there is a scarcity of such 
systems. In this research, we propose a deep learning 
framework by which both acoustic and throat command 
speech can be identified. 

Neural networks for acoustic modeling and hidden Markov 
model (HMM) based speech recognition originally are 
introduced over three decades ago [1]. In the subsequent 
years, some studies achieve little success using a nonlinear 
classification model with a single layer of nonlinear hidden 
units to forecast HMM states from acoustic coefficients of the 
given window [2]. Neither the hardware nor the learning 

algorithms are developed enough at that time to train neural 
networks with many hidden layers using a huge number of 
training samples. Later, deep neural networks (DNNs) consist 
of many layers of nonlinear hidden units, and an output layer 
with several nodes is trained with advances in both machine 
learning algorithms and computer hardware [3]. 

Mel-frequency cepstral coefficient (MFCC) features of 
audio signals are used in most established methods for 
detecting acoustic events using hidden Markov models 
(HMMs) and Gaussian mixture models (GMMs) combinedly 
called (GMM-HMM) [4], [5]. Recent studies show that deep 
learning models are capable of outperforming the highly 
tuned GMM-HMM in many speech recognition tasks [3]. 
Deep learning-based speech recognition models are usually 
trained with a large number of training samples. As most of 
the speech signals are recorded using acoustic microphones 
that are used to train speech recognition systems, people who 
use throat microphones to collect throat speech tend to fail to 
use that system. A throat microphone usually records 
vibrations directly from the wearer's throat. It is a contact 
microphone that is worn against the neck. The subtle 
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difference between an acoustic speech signal and a signal 
obtained from a throat microphone is a reason for the speech 
recognition system trained on only acoustic speech signals to 
fail to obtain the significant accuracy of such systems. 

In this study, we propose a long short-term memory 
(LSTM) recurrent neural network trained with MFCC 
features to recognize both isolated acoustic and throat speech 
commands. With the goal of improved accuracy, we have 
performed continuous wavelet transform (CWT), wavelet 
packet decomposition (WPD), and empirical mode 
decomposition (EMD) on the speech signals before applying 
techniques to obtain the MFCC features. Later we extracted 
the features for the input of the RNN by extracting MFCC 
feature extraction techniques on the decomposed component 
of the signal.  

The proposed LSTM network has outperformed the 
existing studies. Our study shows, that LSTM is much better 
than the GMM-HMM model, convolutional neural networks 
such ascnn-tpool2 [6] and residual networks such as res15 
and res26 [7] with an accuracy score of over 97% on Google’s 
Speech Commands dataset [8]. Using the transfer learning 
technique this model has achieved 95.35% accuracy on our 
throat speech data set.  

 

II. DATA AND METHODS 

A. Data Set Description 
This study uses both lab-generated data on mic throat 

speech and publicly available acoustic speech [8]. The 
publicly available data set has 95,600 one-second long 
utterances of 30 short words, by thousands of different 
people. In order to make the speech command recognition 
model more rigid, the data set we use has background noise 
samples such as pink noise, white noise, and human-made 
sounds. A one-second (or less) WAV format file is used to 
store each utterance. The sample data is encoded as linear 16-
bit single-channel PCM values, at a 16 kHz rate. Ten words 
are chosen for this study. These are highly likely to be useful 
as commands in IoT or robotics applications. These are ‘yes’, 
‘no’, ‘up’, ‘down’, ‘left’, ‘right’, ‘on’, ‘off’, ‘stop’, and ‘go’. 
We label the other words as unknown, which is considered a 
different class. The distribution of the classes is shown in Fig. 
1. 

 

 
Fig. 1. Distribution of files in data sets. 

Since throat speech data sets are not fairly accessible, in 
addition to the acoustic data set [8], we use our own data set 
containing 240 utterances of each word for testing. Each 
signal in this data set is a throat speech stored as a one-second 
16 kHz single-channel .WAV format file. For transfer 
learning, 200 signals of each class are used and the rest is used 
for testing. 

B. Signal Decomposition 
Three speech signal decomposition techniques are used to 

decompose the speech command signals. The purpose is to 
find out suitable decomposition techniques for the present 
study in order to obtain a higher classification accuracy from 
the proposed model. The decomposition techniques, namely 
continuous wavelet transform (CWT), wavelet packet 
decomposition (WPD), and empirical mode decomposition 
(EMD) are described below.  

1) Continuous Wavelet Transform 
The continuous wavelet transform is considered as one of 

the most powerful techniques for the high-resolution 
decomposition in the time-frequency domain of a signal. The 
wavelet transforms use a variable-length window to detect the 
signal component to generate a time-frequency representation 
of the signal. It is more accurate than the traditional short-
time Fourier transform (STFT) [9], which uses a fixed-length 
window. The prototype wavelet, used in this study to take the 
wavelet transform of the speech signal, is defined as 
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Then the CWT of a signal x(t) is defined as 
 
𝑊((𝑎, 𝑏) = 	 〈𝑥, 𝜓!,#〉 = 	

$
)|!|∫ 𝑥(𝑡)𝜓 '&'#

!
(+,

',  (2) 

 
where a is the scaling parameter and b is the translation 

parameter and the Morlet wavelet function is defined as 
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2) Wavelet Packet Decomposition 
In regular wavelet analysis, the results of frequency 

resolution in higher-level decompositions may not be fine 
enough to extract the necessary information, because the 
decomposition of only the approximation component at each 
level using the dyadic filter bank. This may cause problems 
in certain applications. The wavelet packet method is a 
generalization of wavelet decomposition that offers a better-
off range of possibilities for signal analysis and has better 
control of frequency resolution for the decomposition of the 
signal. A wavelet packet is represented as a function, ψ, is 
defined as 
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where ‘i’ is the modulation parameter, ‘j’ is the dilation 
parameter and ‘k’ is the translation parameter [10]. 
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Fig. 2. (Left) Waveform and log spectrogram of an acoustic speech signal “yes”. (Right-top) Mel power spectrogram, (Right-bottom) Mel-frequency 

cepstrum coefficients.

1) Empirical Mode Decomposition 
The empirical mode decomposition (EMD) is considered 

the fundamental part of the Hilbert–Huang transform (HHT) 
which decomposes a signal into intrinsic mode functions 
(IMF) along with a trend and provides instantaneous 
frequency data [11]. For nonlinear, non-stationary signals, 
and natural signals, EMD has been proven to be most useful 
and is widely used in audio signal processing [12]. 

In this study, we use EMD to decompose signal x(t) into a 
set of IMF (xg(t), g = 1, 2 ... G) components and residue rG(t). 
The procedure of the EMD algorithm used in this study is as 
follows 

 
𝑥(𝑡) = ∑ 𝑥3(𝑡) + 𝑟4(𝑡)4

35$   (5) 

C. Mel-frequency Cepstral Coefficients (MFCC) 
The speech is usually represented in a computer as a one-

dimensional time domain signal. Feature extraction 
approaches are usually used to obtain a multidimensional 
feature vector for every signal. Some other techniques are 
used to parametrically represent speech signals for the 
recognition process, namely linear predictive coding (LPC), 
perceptual linear prediction (PLP), neural predictive coding 
(NPC), and Mel-frequency cepstrum coefficients (MFCC) 
[13]. Among them, MFCC is the widely used technique for 
feature extraction from speech signals. MFCC is a 
representation of the real cepstral of a windowed short-time 
signal. Basically, the fast Fourier transform (FFT) is applied 
to the signal to get those cepstral [14]. These features are 
highly effective in audio recognition and in modeling the 
subjective pitch and frequency content of audio signals [15].  

The mel scale which is the human perception of the 
frequency content of sounds [15], [16] is given by 
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where fmel is the logarithmic scale or the subjective pitch in 

Mels corresponding to the actual frequency scale f. To 
calculate MFCCs the speech samples x(n) are first 
transformed to the frequency domain by the M-point discrete 

Fourier transform (DFT) and then the signal energy is 
calculated as 
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where, k = 1, 2 , ... , M and X(k) = DFT(x(n)). If NF denotes 

the number of filters in the filter bank. Finally, the discrete 
cosine transform (DCT) of the log of filter bank output 
energies E(i) (I = 1, 2, ..., NF) is calculated yielding the final 
set of the MFC coefficients Cm, given as 
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where, m = 0, 1, 2, ... R-1, and R is the desired number of 

MFCCs to be extracted from the signal [16]. 
Fig. 2. (left) shows the waveform and log spectrogram of 

an acoustic speech signal for the command “yes”. Fig. 2. 
(right-top) represents Mel power spectrogram of an acoustic 
speech signal for the command “yes”. Fig. 2 (right-bottom) 
depicts Mel-frequency cepstral coefficients of an acoustic 
speech signal for the command “yes”. 

D. Recurrent Neural Networks 
A recurrent neural network (RNN) is a deep artificial 

neural network that is helpful in modeling sequence data. The 
connections between network nodes form a directed graph 
along a temporal sequence, RNN typically shows temporal 
dynamic behavior. Derived from feed-forward neural 
networks, RNNs can use their internal state (memory) to 
process variable-length sequences of inputs. 

The typical feature of the RNN architecture is a cyclic 
connection, which enables the RNN to possess the capacity 
to update the current state based on past states and current 
input data. Unfortunately, when the gap between the relevant 
input data is large, the traditional RNNs such as fully 
recurrent neural networks (FRNNs) and recursive neural 
networks are unable to connect the relevant information. 
However, long short-term memory (LSTM) networks can 
handle the “long-term dependencies [17], [18]. 
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Fig. 3. The architecture of an LSTM network with one memory block, where green lines are time-delayed connections [20]. 

 

 
Fig. 4. The deep LSTM-RNN architecture. 

 

 
Fig. 5. Speech command classification system. First seven blocks represent the input features preparation and the last represent the LSTM-RNN model. 

Unlike standard feed-forward neural networks, the LSTM 
networks have feedback connections making them well-
suited for classifying, processing, and making predictions 
based on time series data. LSTM networks have already 
achieved much success in the field of speech recognition and 
acoustic modeling [19], [20]. 

1) Network Architecture 
LSTM networks contain special units called memory 

blocks in the recurrent hidden layer. Each memory block 
contains one or more self-connected memory cells and three 
multiplicative gates to control the flow of information shown 
in Fig 3. Deep hierarchical network architectures that have 
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been introduced in recent years demonstrate much better 
performance in many classification problems compared to 
shallow ones [21]. 

The deep LSTM-RNN model, we propose here consists of 
several stacked layers of LSTM and fully-connected layers 
wrapped to every temporal slice of the LSTM output. The 
network architecture used in this study is shown in Fig. 4. 

2) Input Parameters 
The number of MFCC feature vectors extracted from a 

signal depends on the length of the analysis window in 
seconds. In our experiments, we apply 22 filters on the 
cepstral extracted from each signal with window lengths 
ranging from 5 ms to 100 ms and take 13 cepstral coefficients 
from each window. The FFT size also varies depending on 
the window length. These MFCC feature vectors are then 
used as trainable parameters for the proposed LSTM-RNN. 
The overall procedure is depicted in Fig. 5. 

One of the motivations is to find the best window length 
for speech data. Appropriate window length is then used to 
extract MFCCs from the decomposed signals as well. Using 
MFCC features from the decomposed signals as inputs yields 
different input shapes. Firstly, we Perform EMD on the 
speech data, each signal is decomposed into four IMFs and 
the rest are saved as residue. Then MFCC features are 
extracted from each IMF and the residue. To compare the 
results, MFCCs from individual IMFs as well as all the 
MFCCs from the IMFs and the residue combined as one 
feature vector are used as inputs. 

Secondly, we Perform CWT on the speech data, then four 
CWT coefficients are obtained from each signal 
corresponding to the 4 wavelet scales use in the experiments. 
The coefficients are of the same shape as speech data. The 
MFCCs from each coefficient are used as training inputs for 
comparison. 

Thirdly, we Perform WPD on the speech data, WPD 
approach transforms the signal into approximation and detail 
coefficients. A four level WPD yields 2^ncombinations of 
approximation and detail coefficients at level n=1,2,3,4. 
Extracted MFCCs from each approximation coefficient are 
used as inputs. Also combining the MFCCs from both 
approximation and detail coefficients at each level resulted in 
another set of inputs. 

 

III. IMPLEMENTATION 
We use the Keras sequential class to implement the 

multilayer LSTM-RNN model. The first four layers of the 
model are LSTM layers. The Keras implementation of LSTM 
uses the hyperbolic tangent (tanh) activation function and for 
the recurrent step, it uses the sigmoid function. These layers 
take a 3D tensor as input, the three axes being batch size, 
time-steps, and feature. 

Four fully connected layers followed the LSTM layers. The 
rectified linear unit (ReLU) activation function is used in each 
fully connected layer. The output of the fully connected 
layers is then flattened and passed through another fully 
connected layer activated with the softmax function to 
produce the final output. Where each node represents a 
unique class. This gives the probability of each input 
belonging to each class. For throat speech classification, 

weights of the model trained with acoustic speech signals are 
used for transfer learning. 

 

IV. RESULTS AND DISCUSSION 
The experiments in this work are done in several stages. In 

the first stage, we train the model with MFCC features from 
two classes of the data set with the goal of finding the best 
analysis window. The MFCC features are extracted from 
acoustic signals labeled as ‘left’ and ‘right’ using different 
window lengths. 

Test accuracy and receiver operating characteristic (ROC) 
metrics are used to evaluate the classifier output quality. The 
performance of the model trained with MFCC feature vectors 
obtained using different window lengths and FFT sizes is 
shown in Table I. 

The default window length used to perform MFCC on 
speech signals is usually between 30ms to 100ms in most 
experiments. Based on the accuracy of the model for different 
window lengths, using a window length of 20ms to extract 
MFCC presumably yields the best results with a test accuracy 
of 99.03% in binary classification. In the following stage, 
MFCC features from the complete training data set are used 
to train the model. Table II shows the accuracy metrics of the 
model in the multiclass classification of MFCC feature 
vectors obtained using different decomposition methods. 
 

TABLE I: MODEL PERFORMANCE ON BINARY CLASSIFICATION FOR 
DIFFERENT WINDOW LENGTHS 

Window length 
(ms) FFT size Accuracy (%) ROC-AUC 

5 128 95.81 97.57 
10 512 97.61 97.85 
15 512 97.17 98.14 
20 512 99.03 98.66 
25 1024 96.74 98.43 
30 1024 98.07 97.80 
35 1024 97.14 97.66 
40 1024 96.70 97.71 
45 1024 95.73 96.61 
50 2048 96.24 97.52 
55 2048 94.86 96.47 
60 2048 96.28 98.00 
65 2048 97.14 97.66 
70 2048 97.16 97.90 
75 2048 97.09 96.71 
80 2048 96.24 97.52 
85 2048 97.17 97.90 
90 2048 97.14 97.66 
95 4096 95.83 97.81 

100 4096 96.70 97.71 
 
The trained and tested the model by using data without any 

decomposition. The MFCC extracted from of the speech is 
used as the input of the network model. The test accuracy 
achieved by the model for acoustic speech data is 96.90%.  

To understand the efficacy of the model and the power of 
the EMD decomposition technique, the model is trained using 
MFCC extracted from IMFs after decomposing the speech 
signal with EMD. Accuracy comparison shows that the 
model’s accuracy does not improve for any of the four IMFs, 
however, the accuracy for combined IMFs is slightly higher 
at 97.05%.  

Classification accuracy of any of the CWT coefficients is 
not higher than the raw speech data, the highest being 
95.51%. The best classification accuracy for WPD 
approximation coefficients is 97.11% at level-1, which is 
higher than the raw speech data. The model trained with 
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MFCC features extracted from the approximation and detail 
coefficients of level-1 WPD combined has performed better 
than the other models with a precision score of 97.79%. 
 

TABLE II: COMPARISON OF CLASSIFICATION ACCURACY OBTAINED BY 
THE MODEL FOR DIFFERENT MFCC DATA 

Training data MFCC 
features 

Test accuracy 
(%) 

ROC 
(Avg. AUC) 

Speech signals 13 96.90 96.27 
Level-1 A 13 97.11 96.18 
Level-2 A 13 95.18 94.07 
Level-3 A 13 92.13 91.94 
Level-4 A 13 86.23 84.95 

Level-1 A+D 26 97.79 97.55 
Level-2 A+D 52 95.68 94.75 
Level-3 A+D 104 91.46 90.64 
Level-4 A+D 208 87.15 85.39 

CWT-1 13 95.51 93.89 
CWT-2 13 87.62 85.47 
CWT-3 13 88.90 86.15 
CWT-4 13 89.69 89.27 
IMF-1 13 90.05 88.79 
IMF-2 13 91.62 90.67 
IMF-3 13 87.59 86.48 
IMF-4 13 82.49 80.60 

IMFs+residue 65 97.05 96.34 
Level-N a denotes the approximation coefficients of NTH level WPD. A+D 
denotes combined approximation and detailed coefficients. CWT-N denotes 
the CWT coefficients for scaling Factor N. IMF-N denotes the NTH IMF 
extracted from the signal. 

 
TABLE III: COMPARISON OF CLASSIFICATION ACCURACY FOR THROAT 

SPEECH 
Training Data Test Data Accuracy (%) 

Acoustic Throat 69.95 
Throat Throat 99.82 

Throat (Transfer Learning) Throat 95.35 
Acoustic + Throat Throat 98.66 
Acoustic + throat Acoustic 96.32 

 

 
Fig. 6. Training loss and accuracy for combined training data. 

 
Evidently, decomposing the speech signals using WPD to 

then extract MFCC features from both approximation and 
detail coefficients to train the deep LSTM-RNN is the best 
approach for isolated acoustic speech command recognition.  
The trained model is tested against the throat speech test data 
set and it achieved 69.95% accuracy. The model is retrained 
with throat speech data using pre-trained weights which 
drastically improved accuracy by 95.35%. In comparison to 

the model accuracy when trained with only throat speech, 
which is 99.82%, this method can be used to classify both 
acoustic and throat speech signals. Another alternative is to 
combine both acoustic and throat speech signals for training 
which obtained 96.32% and 98.66% for acoustic and throat 
speech classification respectively. The accuracy of the model 
during training and validation of the model a using combined 
acoustic and throat dataset is depicted in Fig 6. The ROC 
curves for each class are shown in Fig. 7. 
 

 
Fig. 7. ROC of (1) acoustic and (2) throat speech test data for combined 

training data. 

V. CONCLUSION 
Speech classification has tremendous applications in AI 

based systems. However, there is a scarcity of the 
development of the models for throat speech classification. In 
this work a LSTM-based RNN model has been proposed to 
classify both acoustic and throat speech. Input features have 
been prepared by first decomposing the speech signal by 
wavelet packet transform, continuous wavelet transform and 
empirical mode decomposition techniques. The MFCC has 
been extracted from each component of the speech which in 
turns has been used as the RNN model input. The model 
shows significant accuracy for both acoustic and throat 
speech. We obtain LSTM is much better than the GMM-
HMM model, convolutional neural networks such as CNN-
tpool2 and residual networks such as res15 and res26 with an 
accuracy score of over 97% on Google’s Speech Commands 
dataset and we achieve 95.35% accuracy on our throat speech 
data set using the transfer learning technique. Thus we 
conclude that this model can be part of any IOT-based 
system.  
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